

Physics

Grade - 13 (2016)

Marking Scheme

Physics - I

2

- 1) 2 2) 1
- 11) 5 12)
- 21)
- 31)
- 41)

- 3) 3
- 5 1 13)
- 2 22) 23)
- 32) 33)
- 4 42) 43) 1

2

- 4) 3
- 14) 3
- 2 24) 1
- 4 34) 3

1

3

2

4

44) 4

- 5) 3
- 15) 4 3
- 25) 1 4
- 35) 36)
- 45) 2 1 46)

- 6) 3 7) 2
- 16) 17) 3
- 26) 27)
 - 5 2 28)
- 37) 5 2 38)
- 47) 1 1 48)

2 9)

8)

10)

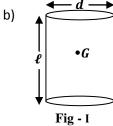
5

1

- 19) 20)
- 18)
 - 2 4

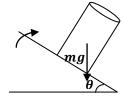
3

- 29) 30)
 - 2 1
- 5 39) 40) 1
- 2 49) 4 50)
 - $(50 \times 1 = 50)$


Physics - II A - Structure

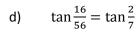
01

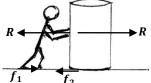
01)


Center of mass would not change a) Center of gravity would change

01

c)


i.


01

1

ii.

e) i.

 f_1 f_2 ii. Coefficient of static friction $\mu_S = \frac{100}{400} = 0.25$

Coefficient of kinetic friction $\mu_k=rac{90}{400}=0.225$

iii. Not to slide down

$$R = f_1$$
 — 01

02

01

but $f_1 \leq \mu mg$

$$R \leq \mu mg$$

$$m \ge \frac{R}{\mu g}$$

$$m \ge \frac{100}{0.2 \times 10}$$

$$m \ge 50 \ kg$$

$$m_{min} = 50 \ kg$$

Marks -10

01

2)

- a) To keep the steady temperature _______ 01
- b) From upward , to be completely filled by steam ______ **01**
- c) To make good thermal contact 01
- d) It is thermal conductor 01
- e) Constant pressure head, To maintain constant rate volume flow of water (suitable reason) ______ **02**
- f) To absorb heat from the rod continuously/ To absorb heat completely from the rod

______01

g)
$$\frac{Q}{t} = KA \frac{\Delta \theta}{\Delta \ell} = \frac{mL}{t}$$

$$K = \frac{\frac{mL}{t}}{A\frac{\Delta\theta}{\Delta\ell}} = \frac{30 \times 10^{-3} \times 3 \times 10^{5}}{60 \times 180 \times 10^{-4} \times \frac{(86-61)}{5 \times 10^{-2}}}$$

$$=\frac{500}{30}=16.67\,\mathrm{Wm^{-1}K^{-1}}$$

Marks -10

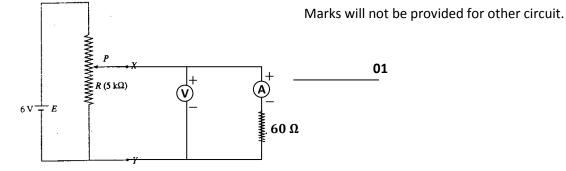
01

3)

- a) Transverse standing waves in violin string Progressive longitudinal waves towards ear-
- b) Quality of sound 01
- c) Presence of overtones ______ 01
- d) Transverse waves 01
- e) The mechanical energy is transformed from string to the air molecules inside the sonometer box through bridges.

f)

g) Knocked the tuning fork and place it on the sonometer box in between the bridges such as placing stem on the sonometer. ——


h)
$$f = \frac{1}{2\ell} \sqrt{\frac{T}{m}}$$

i) $\ell = \frac{1}{2f} \sqrt{\frac{T}{m}} = \frac{1}{2 \times 500} \sqrt{\frac{40}{1 \times 10^{-3}}} = \frac{2 \times 10^2}{1000}$

$$\ell = 20 \, cm$$
 ______ 01

Marks -10

4) a)

i.

ii.

iii.
$$I = \frac{\varepsilon}{60} = \frac{6}{60} A = 0.1 A$$
 — **01**

٧.

vi. Yes,

 $Gradient = \frac{I}{V} = \frac{1}{R + R_A}$ Inverse value addition of 60 resistance of the ammeter also included in the calculated value. — **01**

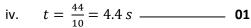
b)

i. Resistance of the filament increases with time — 01

ii.
$$R = \frac{V^2}{P} = \frac{6^2}{0.36} = 100\Omega$$
 01

Marks -10

5)

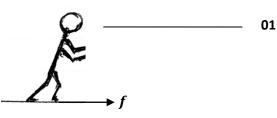

a)
i.
$$S_1 = \frac{1}{2}(10 \times 1.5) + 10 \times 19 + \frac{1}{2}(10 + 8) \times \frac{1}{2} = 202$$

$$S_2 = \frac{1}{2}(8 + 10.5) \times 1 + 10.5 \times 17 + \frac{1}{2}(10.5 + 9) \times 1 = 197.5 m$$

$$S_3 = \frac{1}{2}(9 + 10) \times 2 + 10 \times 17.5 + \frac{1}{2}(10 + 8) \times \frac{1}{2} = 198.5 m$$
O1

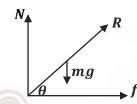
ii.
$$202 = \frac{1}{2}(8+10) \times 1 + 10 t_0$$

 $10 t_0 = 202 - 9 = 193$
 $t_0 = 19.3 s$ **01**


iii. $V_1 = \frac{202}{21} = 9.62 \text{ ms}^{-1}$ $V_2 = \frac{197.5}{19.5} = 10.13 \text{ ms}^{-1}$ $V_3 = \frac{198.5}{20} = 9.93 \text{ ms}^{-1}$ $V_4 = \frac{202}{20.3} = 9.95 \text{ ms}^{-1}$

v. To have high initial acceleration
Inter change button when running high speed

b)


i. By frictional force

ii.
$$F = ma$$

$$f = 60 \times \frac{10}{1.5} = 400 N$$

iii.
$$\tan \theta = \frac{N}{f} = \frac{600}{400} = 1.5$$

 $\theta = \tan^{-1} 1.5$ **01**

iv. There will be balanced force due to the drag force ,the friction which act by sliding and the force mentioned in part b (i) _________01

v. Centripetal force
$$F = \frac{mV^2}{r}$$

$$F = \frac{60 \times 10^2}{7}$$

$$F = \frac{6000}{7} N$$
 01

By frictional force — 01

c) When overtake, take place (he take t s to overtake)

$$S_G = S_H$$

$$\frac{1}{2}(10 \times 1.5) + 10(t - 1.5) = \frac{1}{2}(2.5 \times 11.5) \times 2.5 + 11.5(t - 2.5)$$
01

$$t = \frac{3.75}{1.5} = 2.5 s$$

6)			
a)			
	i.	The light ray travels in straight lines from each point of total internal reflection to the next. In ar	
		endoscope bundle of optical fibers is used to transmit an image	
		bundle by a small lens to other end of the bundle.	
	ii.	The key to scalpel lies in the fact that the photons in a light be	
		energy and they all travel parallel to one another, i.e. Laser lig parallel 03	nt is nignly monochromatic and
	iii.	Laser to a spot of tissue of area (nearly equal 0.01mm2) would	I will he sufficient to cause the
		tissue temperature at that point to rise large, i.e. high intensit	
b)		<u></u>	,
,	i.	$I = \frac{\frac{60}{100} \times 75}{1.5 \times 10^{-3}} = 50 \times 10^{-3} \ W \ mm^{-2}$	
	ii.	Energy = P.t	
		$= 75 \times 0.5 \times 10^{-3} = 37.5 \times 10^{-3}$	
		$= 3.75 \times 10^{-2} I$ 02	
c)		<u></u>	
	i.	The lens focuses a laser to a tiny spot when the power of the l	peam is concentrated at certain
		tissue —	02
	ii.	To make possible spot welding due the distance between the tissue and lens is very small.	
			02
			02 Marks -15
	7)	Cale State of the	
	7) i.	The National edearning Portal for Inc.	
		Poiseuille's equation — 01	
	i.	Poiseuille`s equation — 01 with correct identification of symbols —	
	i. a)	with correct identification of symbols ———vessels may not rigid	Marks -15
	i. a)	with correct identification of symbols vessels may not rigid Vessels not horizontal	Marks -15
	i. a) b)	with correct identification of symbols ———vessels may not rigid	Marks -15
	i. a) b) ii.	with correct identification of symbols vessels may not rigid Vessels not horizontal Density may not be uniform (compressible) any two	Marks -15 — 01 — 01
	i. a) b) ii.	with correct identification of symbols vessels may not rigid Vessels not horizontal Density may not be uniform (compressible) any two Average volume flow rate = $\frac{70 \times 70 \times 10^{-6}}{60}$	Marks -15 — 01 — 01
	i. a) b) ii. a)	with correct identification of symbols vessels may not rigid Vessels not horizontal Density may not be uniform (compressible) any two Average volume flow rate = $\frac{70\times70\times10^{-6}}{60}$ = $8.17\times10^{-6}m^3s^{-1}$	Marks -15 — 01 — 01
	i. a) b) ii. a)	with correct identification of symbols vessels may not rigid Vessels not horizontal Density may not be uniform (compressible) any two Average volume flow rate = $\frac{70 \times 70 \times 10^{-6}}{60}$ = $8.17 \times 10^{-6} m^3 s^{-1}$ = $\frac{Q}{t}(Vt)$ -Average volume flow rate	Marks -15 — 01 — 01
	i. a) b) ii. a)	with correct identification of symbols vessels may not rigid Vessels not horizontal Density may not be uniform (compressible) any two	Marks -15 — 01 — 01
	i. a) b) ii. a)	with correct identification of symbols vessels may not rigid Vessels not horizontal Density may not be uniform (compressible) any two Average volume flow rate = $\frac{70 \times 70 \times 10^{-6}}{60}$ = $8.17 \times 10^{-6} m^3 s^{-1}$ $\frac{Q}{t}(Vt)$ —Average volume flow rate Q = AV $\frac{Q}{t}(Vt) = \frac{\pi d^2}{4} = \frac{\pi (1 \times 10^{-2})^2}{4} = 7.9 \times 10^{-5} m^2$	Marks -15 — 01 — 01
	i. a) b) ii. a)	with correct identification of symbols vessels may not rigid Vessels not horizontal Density may not be uniform (compressible) any two	Marks -15 — 01 — 01

iii. a) Dimension of N_R is $\frac{L \times LT^{-1} \times ML^{-3}}{MI^{-1}T^{-1}} = 1$ N_R is dimensionless b) $N_R = \frac{1 \times 10^{-2} \times 0.103 \times 1050}{4 \times 10^{-3}} = 270$ As N_R is less than 2000, the flow will be laminar (stream) _______01 iv. a) $Q = 2.5 \times 10^{-6} m^3 s^{-1}$ $\frac{\pi \times \Delta p \times (2 \times 10^{-3})^4}{8 \times 4 \times 10^{-3} \times 0.2} = 2.5 \times 10^{-6}$ $\Delta p = 0.32 \times 10^3 Pa$ 01 b) Rate at which work is done by the heart = $Q\Delta p$ $= 2.5 \times 10^{-6} \times 0.32 \times 10^{3} = 8 \times 10^{-4} I s^{-1}$ Marks -15 8) a) $F = BIl \sin \theta$ $F = QVB \sin \theta$ b) Force act on boat forward direction __ i. 01 Fleming's left handle rule 01 ii. iii. Increasing current Increasing number of turns _____ No, There will be action and reaction according to the Newton's thirds law, i.e., but, these two act on the boat so, resultant zero. c) Breaking the molecules into positive and negative ions, is called ionization. Current is produced by flowing positive ions toward cathode and negative ions towards anode. Magnetic force acts backward on the flowing ions (sea water) then, reaction act on the boat forward direction. _____ $F_m = Drage force$ $BIl \sin 90^0 = 12000$ 01 $B = \frac{12000}{1000 \times 1.5} = \frac{12}{1.5} = 8 T$ 01 Marks -15 9) A

a)

i.
$$P_1 = I_1^2 R = \left(\frac{P}{V}\right)^2 R$$

$$= \left(\frac{25 \times 10^6}{25 \times 10^3}\right)^2 10 = 10 \times 10^6 W = 10 MW$$
 02

ii.
$$P_1 = \left(\frac{25 \times 10^6}{25 \times 10^4}\right)^2 10 = 10 \times 10^4 W = 0.1 MW$$

b)

- DC current cannot be stepped up or stepped down, so , power dissipation is high 02 i.
- $25000 V_X = 1000 \times 10$ ii.

$$V_X = 15000V$$
 ________ **01**

 $250000 - V_Y = 100 \times 10$ iii.

$$V_Y = 249000 V$$
 — **01**

c)

i.
$$V_{peak} = 380 \times 10^3 \sqrt{2} V$$
 ______01

i.
$$V_{peak} = 380 \times 10^3 \sqrt{2} V$$
 _______01
ii. $E = -\frac{\delta V}{\delta x} = \frac{380 \times 10^3 \sqrt{2}}{3.5}$ _______02

d)

- If humidity is high, more crackling sound because breaking field strength is low for moisture air i.
- For the explanation of corona discharge ______ 02 ii.

Marks -15

9) B

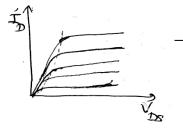
a)

JFET

BJT

One p-n junction

two p-n junction


Charge carrier electron or hole

Charge carrier both electron and hole

Controlled by field

Controlled by current

b)

ii. V_{Gs}-Gate –source voltage 01

iii. Marking linear region, saturation region and cut off region all correct — 01

c)

Identifying zero gate current $I_G = 0$ i. Voltage drop across R_G = 0 (I_GR_G = 0)

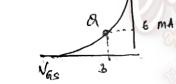
01 01

ii.

$$V_{GS} = V_G - V_S = 0 - I_D R_S$$

$$I_D = \frac{-V_{GS}}{R_S}$$

Applying the Kirchhoff's laws $V_{DS} = V_{DD} - I_D(R_D + R_S)$ —————01 iii.


d)

Cut-off voltage $V_{GS(off)} = -8V$ i.

$$I_{DSS} = 16mA$$

Denoting Q ii.

 $V_{GS} = -3V(accept\ value\ between - 2.5\ to - 3.5)$ iii.

_ 01

$$I_D = \frac{-V_{GS}}{R_S}$$

$$-6 \times 10^{-3} = \frac{-3}{R_S}$$

$$R_S = 500\Omega$$
 — 01

 $V_{DS} = V_{DD} - I_D(R_D + R_S)$ iv. $= 10 - 6 \times 10^{-3}(500 + 500) = 4V$ _____

i.
$$Pv = \frac{w}{m} RT$$
 ______ **01**
$$w = \frac{PVm}{RT} = 1 \times \frac{10^5 \times 100 \times 10^{-6} \times 30 \times 10^{-3}}{8.3 \times 300}$$
 = $0.12 \times 10^{-4} kg$ _____ **01**

ii.
$$Q = ms\theta = 0.12 \times 10^{-4} \times 1000 \times 150 \times 750 = 1350$$
 01

iii.
$$Q = ms\theta = 1 \times 250 \times 150 = 3.75 \times 10^4 \text{J}$$

iv.
$$P = \frac{1350 + 3.75 \times 10^4}{60}$$
 01
$$P = \frac{3.885 \times 10^4}{60} = 0.06 \times 10^4 W = 0.6 \ kW$$
 01

v.
$$\frac{P_2}{T_2} = \frac{P_1}{T_1}$$
$$\frac{P_2}{450} = \frac{1 \times 10^5}{300}$$

$$P_2 = 1.5 \times 10^5 Pa$$
 ______ **01**

Additional thrust =
$$(P_2 - P_1)A = (1.5 \times 10^5 - 1 \times 10^5) \times 20 \times 10^{-4} = 100N$$
 _______01

$$vi. P_1V_1 = P_2V_2$$

$$1.5 \times 10^5 \times 100 = 1 \times 10^5 V_2$$

$$V_2 = 150cm^3$$
 ______ **01**

vii.
$$P = P \Delta V \times \frac{750}{60}$$
 ______01

$$P = 1 \times 10^5 \times 50 \times 10^{-4} \times \frac{750}{60} = 12.5W$$
 — **01**

viii.
$$\frac{Q}{t} = \frac{ms\theta}{t}$$

$$\frac{3.75 \times 10^4}{60} = \frac{m}{t} \times 4200 \times 60$$

$$\frac{m}{t} = 2.48 \times 10^{-3} kg s^{-1}$$
 _____ **01**

10) **B**

a)

Nuclear fusion
 Assembling less weight nucleus into heavy nucleus

Take place at high temperature

Nuclear fission

Splitting heavy nucleus into lighter nucleus

______01

Bombardment by slowly moving neutrons

with nucleus ______ **01**

ii.
$$4_1^1 H \rightarrow {}_2^4 He + 2_{+1}^{\ 0} e + energy$$
 ______ **01**

iii. Defect mass=
$$(4X1.007825u-4m_e) - (4.002603u-2m_e)+2m_e$$
 01 =4.0313u- 4.002603u

iv. The rate of consumed Hydrogen =
$$\frac{4 \times 1 \times 10^6}{42.71 \times 10^{-13}} = \frac{9.37 \times 17}{sec}$$
 _______01

b)

i. For the suitable explanation. — 01

ii.
$$x = 3$$
 — **01**

iii. Intial mass =
$$(392.61 \times 10^{-27} + 1.685 \times 10^{-27})kg$$

Final mass = $(388.94 \times 10^{-27} + 3 \times 1.685 \times 10^{-27})kg$

Defect mass =
$$0.307 \times 10^{-27} kg$$
 — 01

iv.
$$E = \Delta mc^2$$

$$E = 0.307 \times 10^{-27} (3 \times 10^8)^2$$
 01

$$E = 2.763 \times 10^{-11} J$$
 — **01**

v.
$$2.763 \times 10^{-11} \times \frac{10}{100} \times \frac{25}{100} = \frac{2.763}{4} \times 10^{-12} J$$
 01

The energy converted into electricity in one second = $6.907 \times 10^{-13} J$

The energy obtained by 1 U nucleus = $6.9 \times 10^{-13} J$

The energy converted into electricity in one second by $392.617 \times 10^{-27} kg$ U nucleus

$$=6.9 \times 10^{-13} J$$
 ______ **01**

Mass of
$$U = \frac{300 \times 10^6}{6.9 \times 10^{-13}} \times 392.617 \times 10^{-27} kgs^{-1} = 170.69 \times 10^{-6} kgs^{-1}$$
 01