ලී ලංකා විතාශ දෙපාරතමේන්තුව ලී ලංකා විතාශ දෙපාරතමේන්තුව යි. ලෙන විතාශ දෙපාරතමේන්තුව ලී ලංකා විතාශ දෙපාරතමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரி**න්න වී නිත්තාන්වේ සිදුල් විතාශ දෙපාරතමේන්තුව ලී ලංකා විතාශ දෙපාරතමේන්තුව** Department of Examinations, Sri Lanka Department **(இலங்கைங் Stiffinka) පිනැප්තිකණා සියාග්**න, Sri Lanka Department of Examinations, Sri Lanka இ ලංකා විතාශ දෙපාරතමේන්තුව ලී ලංකා විතාශ දෙපාරතමේන්තුව ලී ලංකා විතාශ දෙපාරතමේන්තුව කි. ලංකා විතාශ දෙපාරතමේන්තුව ලී ලංකා විතාශ දෙපාරතමේන්තුව ඉහස්කෙසර பරිධකෙන් නිකණස්සාග இහස්කෙස**් වේනාග් විධාරණය සියාග් දෙපාරතමේන්තුව කි. ලංකා විතාශ දෙපාරතමේන්තුව මූ ලංකා විතාශ දෙපාරතමේන්තුව**

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

පැය තුනයි மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි ගෙහනුස வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.

Index Number

Instructions:

- * This question paper consists of two parts;
 Part A (Questions 1 10) and Part B (Questions 11 17).
- * Part A:

 Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.
- * Part B:

 Answer five questions only. Write your answers on the sheets provided.
- * At the end of the time allotted, tie the answer scripts of the two parts together so that Part A is on top of Part B and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiners' Use only

	Combined Math	
Part	Question No.	Marks
	1	
* 1	к с 2	
	3	
	4	
A	5	
144 28 0	6	1 0 0 0
	7	the second second
	8	
	9	
** *.	10	All
s se	11	
	12	
В	13	B 544 84
	14	
	15	
	16	
	17	34 9 P C
»	Total	

Total				_			
In Numbers					F 2 1	6 8 9 .	
In Words	. «	ν	5	e+.	78445	4	

	Code Numbers
Marking Examiner	.a. aud. en Fr. v.a
Checked by:	CARTE S. C.
2-	kd., -e.,c.a
Supervised by:	ar erera neerski coldno

1.	Using the Principle of Mathemati	ical Induction, p	rove that $7^n - 1$	is divisible by 6 for all $n \in \mathbb{Z}$
	i da e e e e e e e e e e e e e e e e e e	er e e roug Local La falancia e a a a a a a a a a a a a a a a a a a	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second s
		•		
				en de la companya de
4		**************	**************************************	e de la composición d La composición de la composición de la La composición de la
		•••••	! 	District Asset in
*,		***************************************	,	
	And the first and the second of the second o			
.:	2	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	The second second
		•••••		
				Taka Turun di Taka di Salah di
٠.				The second secon
	***************************************	•••••	•••••••	***************************************
		• • • • • • • • • • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •		3
			•••••••••••••••••••••••••••••••••••••••	
			*******	•••••
			V 2	
	e e			
2.	Sketch the graphs of $y = x-3 +1$	and $y = 5 - x $		agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence, find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.
2.	Sketch the graphs of $y = x-3 +1$ Hence , find the area of the rectan	and $y = 5 - x $ gular region enc	in the same di	agram.

4	8	7	2
-	$\mathbf{}$		

AL/2024/10/E-I

- 3 - Index Number

3.	Shade in an Argand diagram, the region consisting of points that represent the complex numbers z satisfying the inequalities $ z-2i \le 2$ and $0 \le \text{Arg}(z+2\sqrt{3}) \le \frac{\pi}{6}$.
	Find the greatest value of $ z $ for the complex numbers z represented by the points in this shaded
	region.
	A CONTRACT OF THE PROPERTY OF
	- 1
	$(1)^9$
4.	Show that the constant term in the expansion of $(1+x^3)\left(x-\frac{1}{\sqrt{x}}\right)^9$ is 93.
*	
	<u></u>
	·

	$\left(\frac{1}{2}, \frac{3}{2}, 1 \right)$	
5.	Show that $\lim_{x \to 4} \frac{(\sqrt{x-3}-1)}{(x-4)^2} \sin(\sqrt{x}-2) = \frac{1}{8}$.	y
	(x-4) . The first $(x-4)$ is the first $(x-4)$ in the first $(x-4)$ i	
	do TŽA	• :
	* · · · · · · · · · · · · · · · · · · ·	• 5
	The state of the s	•, ·
1	THE TAX AND THE TA	• *
z.	THE RESERVE TO A STATE OF THE PERSON OF THE	•
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	• ,
	and the second s	. is
		÷ ,
		. 1
1.	5. 25 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1 · 1. 1	
	12	3
		1
		4
		•1
		,
6.	The region enclosed by the curves $y = \frac{2}{x\sqrt[4]{4-x^2}}$, $y = 0$, $x = 1$ and $x = \sqrt{2}$ is rotated about the tension of the curves $y = \frac{2}{x\sqrt[4]{4-x^2}}$.	he
	x-axis through 2π radians. Show that the volume of the solid thus generated is $\pi(\sqrt{3}-1)$.	

7.	Let C be the curve given parametrically by $x = \ln t$ and $y = e^t + t \ln t$ for $t > 0$. Show that $\frac{dy}{dt} = t(e^t + \ln t + 1)$.				
	If the tangent drawn to the curve C at the point corresponding to $(1, a)$, show that $a = 1 + 2e$.	o $t = 1$, passes through the poin	t		
		·			
		a a said a s			
		· ·			
-					
		· · · · · · · · · · · · · · · · · · ·			
	······	ه و از در در از از از از از در			
		••••••			
v		••••••			
*	· · · · · · · · · · · · · · · · · · ·	9			
	*				
3.	Find the equations of the two straight lines passing through perpendicular distance of 1 from the origin.		1		

٠.,		•••••••••••			
		••••••••••••			
		•••••••••••••••••••••••••••••••••••••••			

		······································			
		199,53 + 1,5 + + + + + + + + + + + + + + + + + + +			
		* · · · · · · · · · · · · · · · · · · ·			

9.	Let $A \equiv (-1, 1)$ and $B \equiv (3, 3)$. Write down the equation of the circle S with AB as a diameter Show that the circle $x^2 + y^2 - 4x - 5y + 9 = 0$ touches the circle S internally at B.
	· · · · · · · · · · · · · · · · · · ·
	. 31.32.55
	<i>x</i>
	,, y, u,, y,, y,
	· · · · · · · · · · · · · · · · · · ·
0.	Show that $\frac{\cot \theta}{1 + \sin \theta} + \frac{\cot \theta}{1 - \sin \theta} = 4 \csc 2\theta$.
	Hence, solve $\frac{\cot \theta}{1 + \sin \theta} + \frac{\cot \theta}{1 - \sin \theta} = 8\cos 2\theta.$
,	
a	
. 9	

සියලු ම හිමිකම් ඇව්රෑනි / மුගුට பதிப்புரிமையுடையது / All Rights Reserved

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්ටුවෙන්වූමා මෙපාර්තම්න්තුව විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ඉහங්කෙන් பූර්යාපන නිකාශාස්සහණ ඉහங්කෙන් පැරිණිදීම මහණාස්තුණ ඉහස්කෙන්ව ප්රදේශය නිකාශාස්සහණ ඉහස්කෙන් පැරියාදන නිකාශාස්සහණ Department of Examinations, Sri Lanka Department අ**ඔබෝස්කෙන්න් Skil Intended අතර අතර අතර** ලි ලංකා විභාග දෙපාර්තමේන්තුව ලියුවේන්තුව ලියුවේන්ත් සිටින් ලියුවේන්තුව ලියුවේන්ත් ලියුවේන්තුව ලියුවේන්ත් ලියුවේන්ත් ලියුවේන්තුව ලියුවේන්ත් ලියුවේන්ත් ලියුවේන්ත් ලියුවේන්ත් ලියුවේන්ත් ලියුවේන් ලියුවේන්ත් ලියුවේන්ත් ලියුවේන්ත් ලියුවේන්ත් ලියුවේන් ලියුවේන් ලියුවේන්ත් ලියුවේන් ලියුවේන් ලියුවේන්ත් ලියුවේන් ලියුවේන් ලියුවේන්ත් ලියුවේන් ලියුවේන්ත් ලියුවේන් ලියුවේන්ත් ලියුවේන් ලියුවේන් ලියුවේන් ලියුවේන් ලියුවේන් ලියුවේන්ත් ලියුවේන් ලි

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

Part B

- * Answer five questions only.
- 11. (a) Let $f(x) = x^2 + 2x + c$, where $c \in \mathbb{R}$.

It is given that the equation f(x) = 0 has two real distinct roots. Show that c < 1.

Let α and β be the roots of f(x) = 0.

Show that $\alpha^2 + \beta^2 = 4 - 2c$.

Let $c \neq 0$ and $\lambda \in \mathbb{R}$. The quadratic equation with $\alpha + \frac{1}{\alpha}$ and $\beta + \frac{1}{\beta}$ as its roots is $2x^2 + 12x + \lambda = 0$. Find the values of c and λ .

(b) Let $f(x) = x^3 + px^2 + qx + p$, where $p, q \in \mathbb{R}$. The remainder when f(x) is divided by (x-2) is 36 more than the remainder when f(x) is divided by (x-1). Show that 3p + q = 29.

It is also given that (x + 1) is a factor of f(x). Show that p = 6 and q = 11, and factorize f(x) completely.

Hence, solve f(x) = 3(x+2).

12.(a) The parents of a family decide to invite 6 out of 15 of their close relatives for a dinner. While the father has 5 close female relatives and 3 close male relatives, the mother has 3 close female relatives and 4 close male relatives.

Find the number of different ways in which

- (i) the father can invite 3 of his close female relatives and the mother can invite 3 of her close male relatives,
- (ii) the father can invite 3 of his close relatives and the mother can invite 3 of her close relatives so that 3 males and 3 females are invited.

海涅烈為

(b) Let
$$U_r = \frac{1}{r(r+2)(r+4)}$$
 and $f(r) = \frac{1}{r(r+2)}$ for $r \in \mathbb{Z}^+$.

Determine the value of the real constant A such that $f(r) - f(r+2) = AU_r$ for $r \in \mathbb{Z}^+$.

Hence, show that
$$\sum_{r=1}^{n} U_r = \frac{11}{96} - \frac{1}{4(n+1)(n+3)} - \frac{1}{4(n+2)(n+4)}$$
 for $n \in \mathbb{Z}^+$.

Show further that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum.

Find the value of the real constant m such that $\lim_{n\to\infty} \sum_{r=1}^{n} (mU_r + U_{n+1-r}) = \frac{11}{32}$

13. (a) Let
$$a, b \in \mathbb{R}$$
, $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & a & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & a & b \\ 3 & b & a \end{pmatrix}$. It is given that $2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$. Show that $a = 0$ and $b = 5$.

With these values for a and b, let $C = AB^T$.

Find C and write down C^{-1} .

Find the matrix **D** such that $\mathbf{DC} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

(b) Let $z_1, z_2 \in \mathbb{C}$. Show that

(i)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

(ii)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

(iii)
$$z_1\overline{z}_1 = \left|z_1\right|^2$$

Using the result that $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$ for $z_2 \neq 0$, show that if $|z_1| = 1$ and $z_1 \neq \pm 1$, and also if $\frac{z_1 + z_2}{1 + z_1 z_2}$ is real, then $|z_2| = 1$.

(c) Express $\sqrt{3} + i$ is the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $0 < \theta < \frac{\pi}{2}$.

Using De Moivre's theorem, show that $\frac{(\sqrt{3} + i)^{24}}{2^{23}(1+i)} = 1 - i$.

14.(a) Let $f(x) = \frac{px+q}{(x-1)(x-2)}$ for $x \in \mathbb{R} - \{1, 2\}$, where $p, q \in \mathbb{R}$. It is given that the graph of y = f(x) has a stationary point at (0, 1). Show that p = -3 and q = 2.

For these values of p and q, show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{x(3x-4)}{(x-1)^2(x-2)^2}$ for $x \ne 1, 2$, and find the intervals on which f(x) is decreasing and the intervals on which f(x) is increasing.

Sketch the graph of y = f(x) indicating the asymptotes and the turning points.

Hence, find the number of real solutions to the equation $x^2(x-1)(x-2) = 2 - 3x$.

(b) A cylinder with a top and a bottom is made to have a volume of 1024π cm³. Let r cm be the radius of the cylinder. Show that the total surface area S cm² of the cylinder is given by $S = 2\pi \left(\frac{1024}{r} + r^2\right)$ for r > 0.

Show that S is minimum when r = 8.

15. (a) Find the values of the real constants A and B such that $3t^2 + 4 = A(t^2 - 2t + 4) + Bt(t + 1)$ for all $t \in \mathbb{R}$.

Hence or otherwise, find $\int \frac{3t^2 + 4}{(t+1)(t^2 - 2t + 4)} dt.$

(b) Using the substitution $u = x + \sqrt{x^2 + 3}$, show that $\int_0^1 \frac{1}{\sqrt{x^2 + 3}} dx = \frac{1}{2} \ln 3.$ Let $J = \int_0^1 \sqrt{x^2 + 3} dx$. Using integration by parts, show that $2J = 2 + \int_0^1 \frac{3}{\sqrt{x^2 + 3}} dx$.

Deduce that $J = 1 + \frac{3}{4} \ln 3$.

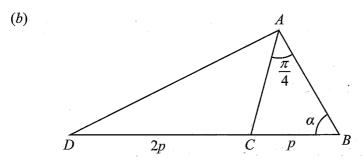
(c) Using the formula $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$, where a is a constant, show that

$$\int_{0}^{\frac{\pi}{4}} \ln\left(\frac{\cos x}{\cos x + \sin x}\right) dx = \frac{\pi}{8} \ln\left(\frac{1}{2}\right).$$

16. Let $A \equiv (1, 2)$ and $B \equiv (a, b)$, where $a, b \in \mathbb{R}$. It is given that the perpendicular bisector l of the line segment AB has the equation x + y - 4 = 0. Find the values of a and b.

Let $C \equiv (3, 1)$. Show that the point C lies on the line l and find $A\hat{C}B$.

Let S be the circle through the points A, B and C. Show that the centre of S is given by $\left(\frac{13}{6}, \frac{11}{6}\right)$ and find the equation of S.


Hence, find the equation of the circle passing through the points A, B and the point $D \equiv (0, 3)$.

17.(a) Express $6\cos 2x - 8\sin 2x$ in the form $R\cos(2x + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

Hence, solve $6\cos 2x - 8\sin 2x = 5$.

Express $24\cos^2 x - 32\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where $a, b, c \in \mathbb{R}$ are constants to be determined.

Deduce the minimum value of $24\cos^2 x - 32\sin x \cos x$.

In the triangle ABC shown in the figure, BC = p, $B\hat{A}C = \frac{\pi}{4}$ and $A\hat{B}C = \alpha$. The point D lies on the extended line BC such that CD = 2p.

Show that $AB = p(\cos \alpha + \sin \alpha)$.

Find AD^2 in terms of p and α .

Deduce that if AD = 3p, then $\alpha = \tan^{-1}(5)$.

(c) Solve the equation $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$

മീത്രം ම හිමිකම් ඇවිරිණි /முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ම් ලංකා විභාත දෙපාර්තමේත්තුව ලි ලංකා විභාත දෙපාර්තමේත්තුව කි. මෙසාර්තමේත්තුව මින්න දෙපාර්තමේත්තුව ලි ලංකා විභාත දෙපාර්තමේත්තුව මුහස්කෙසේ uffl.කළේ නිකාක්සියගේ මුහස්කෙස් uffl.කළ නිකාක්සියගේ මිල්ල්කික්ව ප්රියාදේ නිකාක්සියගේ මුහස්කෙස් uffl.කළේ නිකාක්සියගේ Department of Examinations, Sri Lanka Department **මුහස්කිකිස්, Srifting ජින්**නේ මුහත්කික් මෙන් මුහස්කෙස් uffl.කළේ නිකාක්සියගේ ලි ලංකා විභාත දෙපාර්තමේත්තුව ලි ලංකා විභාත දෙපාර්තමේත්තුව ලි ලංකා විභාත දෙපාර්තමේත්තුව ලි ලංකා විභාත දෙපාර්තමේත්තුව මු ලංකා විභාත දෙපාර්තමේත්තුව නිකාක්සියගේ uffl.කළේ නිකාක්සියගේ uffl.කළේ නිකාක්සියගේ මුහස්කෙස් uffl.කළේ නිකාක්සියගේ

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

10 E II

පැය තුනයි

மூன்று மணித்தியாலம்

Three hours

අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.

Index Number

Instructions:

* This question paper consists of two parts;

Part A (Questions 1-10) and Part B (Questions 11-17)

* Part A:

Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.

* Part B:

Answer five questions only. Write your answers on the sheets provided.

- * At the end of the time allotted, tie the answer scripts of the two parts together so that Part A is on top of Part B and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.
- * In this question paper, g denotes the acceleration due to gravity.

For Examiners' Use only

Part	Combined Mather Question No.	Marks
1 11/1	1	IVIAI NS
	2	
	3	
	4	
\mathbf{A}	5	
	6	
	7	
	8	-
4	9	-
	10	
,	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	Total	

	Total
In Numbers	
In Words	

		Code N	umbers	
Marking Exami	ner			-
Checked by:	1			
Ž	2			
Supervised by:				

Part A

1.	A particle A of mass $2m$ and a particle B of mass m moving on a smooth horizontal table along the same straight line towards each other with speeds u and $3u$ respectively, collide directly. After the collision A and B move in opposite directions. The coefficient of restitution between A and
	B is e. Show that $e > \frac{1}{2}$.
	the second secon
1	
,	
•	
2.	A particle is projected from a point O on a horizontal ground, with an
	initial speed u at an angle $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ to the horizontal. The particle hits a vertical wall which is at a horizontal distance l from O at a height $h > 0$ from the ground (see the figure).
	Show that $h = l \tan \theta - \frac{gl^2}{2u^2} \sec^2 \theta$ and deduce that $\sin 2\theta > \frac{gl}{u^2}$.
	$2u^2$ u^2
	To the state of th

3.	A particle P of mass m lies on a rough inclined plane whose inclination to the horizontal is 30° . Particle P is connected, by a light inextensible string passing over a fixed smooth pulley at the top of the inclined plane, to a particle Q of mass $4m$ which is free to move vertically (see the figure). The part of the string on the inclined plane lies along a line of greatest slope of the plane.
	The coefficient of friction between P and the plane is $\frac{1}{2}$. The system is released from rest with
	the string taut. It is given that P moves up the inclined plane. Obtain equations sufficient to determine the tension of the string.
	A CONTRACTOR OF THE CONTRACTOR
	· · · · · · · · · · · · · · · · · · ·
	*
4.	A car of mass M kg travels along a horizontal straight road with its engine working at a constant power of P W. There is a constant resistance of R N to the motion of the car. Find the acceleration of the car at the instant when its speed is u m s ⁻¹ . Now, the car travels at a constant speed up a straight road that is inclined at an angle $\theta \left(0 < \theta < \frac{\pi}{2}\right)$
	to the horizontal. Find this constant speed if the car is subjected to the same resistance R N and have the same power P W.
	*
	•

[see page four

5.	A particle P of mass $2m$ is connected to two fixed points A and B lying on a vertical line by two light inextensible strings each of length I . The particle P moves in a horizontal circle with a constant angular velocity ω with both strings taut and making an angle θ		$A \mid \theta$	1	
	$\left(0 < \theta < \frac{\pi}{2}\right)$ to the vertical, as shown in the figure.			P	
	Show that the tension in the string AP is $m(l\omega^2 + g\sec \theta)$.	ω	1 1 1		
			θ	✓ 1	
	······································		B_{ι}		
		• • • • • • • • • • • • • • • • • • • •	6.		
		• • • • • • • • • • • • • • • • • • • •		••••••	
		• • • • • • • • • • • • • • • • • • • •		* * * * * * * * * * * * * * * * * * *	
	·············				
		••••			
		• • • • • • • • • • •			
			• • • • • • • • • • • • • • • • • • • •	***************************************	
				• • • • • • • • • • • • • • • • • • • •	
	······	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
6.	Let u and v be two unit vectors such that $\mathbf{u} \cdot \mathbf{v} = \frac{1}{2}$. Also, let $\mathbf{a} = \alpha \mathbf{u} + \mathbf{v}$ and	nd b = u	$+\beta \mathbf{v}$, whe	$\text{re } \alpha, \beta \in \mathbb{R}$	•
6.	Let u and v be two unit vectors such that $\mathbf{u} \cdot \mathbf{v} = \frac{1}{2}$. Also, let $\mathbf{a} = \alpha \mathbf{u} + \mathbf{v}$ and If the vectors a and b are perpendicular, and $\mathbf{a} + \mathbf{b}$ is parallel to u , find the				•
6.	<i>∠</i>				•
6.	<i>∠</i>				•
6.	<i>∠</i>				
6.	<i>∠</i>				-
6.	<i>∠</i>				•
6.	<i>∠</i>				
6.	<i>∠</i>				•
6.	<i>∠</i>				
6.	<i>∠</i>				
6.	<i>∠</i>				
6.	<i>∠</i>				•
6.	<i>∠</i>				•
6.	<i>L</i>				-
6.	<i>L</i>				
6.	<i>L</i>				•

7.	A uniform rod AB of length $4a$ and weight W is kept in equilibrium with its upper end B against a smooth vertical wall and the lower end A on a smooth plane inclined at 30° to the horizontal by applying a horizontal force P to the rod at the point C , where $AC = a$. The rod is inclined at 30° to the inclined plane, as shown in the figure. Find the value of P .	B
	A 30°	
		,
	<u> 30°\</u>	
		. •
		. •
		• "
		. •
		. •
8.	Two particles A and B of masses m and $2m$ respectively, are placed on a plane inclined at an angle $\frac{\pi}{4}$ to the horizontal and are connected by a light inextensible string and kept in equilibrium by a force P applied to A , as shown in the figure. The line of action of P and the string lie along a line of greatest slope of the plane. The particle A lies on the rough part of the plane and the particle B lies on the smooth part of the plane. The coefficient of friction between A and the plane is $\frac{1}{2}$. Show that $2\left \sqrt{2}P-3mg\right \leq mg$.	H
	,	• •
		• •
		••
		• •
		•
		• •
		• •
	······································	
		• •
	,	
	······································	

$P(B A) = \frac{3}{10}$. Find $P(B)$ and		S.		
••••••		• • • • • • • • • • • • • • • • • • • •	•••••••	***************************************
•••••••••••••••••••••••••••••••••••••••				
· · · · · · · · · · · · · · · · · · ·			• • • • • • • • • • • •	÷ , , , , , , , , , , , , , , , , , , ,
		·		
				и -

				••••••
				. 5 v : 2 2
•••••				
-				
	•••••			•••••
· · · · · · · · · · · · · · · · · · ·				
·				

	mean of the following			* * * * *
The median, the mode and the order, are 5, 7 and 5 respecti	mean of the following vely: 1, 3, 4, p , q , r	ng seven obser		* * * * *
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respecti	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen
The median, the mode and the order, are 5, 7 and 5 respective. Here p , q , r and s are real n	mean of the following vely: 1, 3, 4, p, q, rumbers.	ng seven obser	vations, arra	nged in the ascen

සියලු ම හිමිකම් ඇවිරිනි /($oldsymbol{eta}$ ($oldsymbol{eta}$ ($oldsymbol{eta}$) යනු $oldsymbol{eta}$

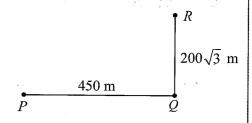
ලංකා විභාග දෙපාර්තමේන්තුව ශී ලංකා විභාග දෙපාර්ත**ල්** විසිට හිදී පුහැරිය දෙපාර්තමේන්තුව ශී ලංකා විභාග දෙපාර්තමේන්තුව හෝහෙස්ට பුරිධකපති නිශානාස්සහාර මුහත්කසට පුරුවිය පිහැරිය දෙපාර්තමේ ප්රධාන නිශානාස්සහාර මුහත්කසට පුරිධකපති නිශානාස්සහාර tepartment of Examinations, Sri Lanka Department **මුහත්කයන්ගේ ප්රධාන විභාග දෙපාර්තමේන්තුව මේ ලංකා විභාග දෙපාර්තමේන්තුව හත්කෙස්ට පුරිධකපති නිශානාස්සහාර මුහත්කයේ පිළිබුණුව මේ ලංකා විභාග දේපාර්තමේන්තුව මේ ලංකා විභාග දෙපාර්තමේන්තුව මේ**

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය இணைந்த கணிதம் \mathbf{II} **Combined Mathematics II**

Part B

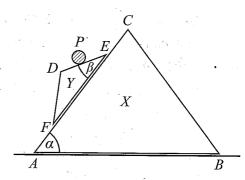
* * Answer five questions only.


(In this question paper, g denotes the acceleration due to gravity.)

11. (a) A car P that begins its journey from rest on a straight road from a point O at time t = 0 s, moves with a constant acceleration of $f \, \text{m s}^{-2}$ for 5 seconds. It then moves with the constant speed attained at t = 5 s for another 5 seconds and at t = 10 s decelerates at a constant deceleration of $f \text{ m s}^{-2}$ and comes to rest at a point A. The car P then changes its direction instantly and returns towards O with the same constant acceleration of $f \text{ m s}^{-2}$ on the same road.

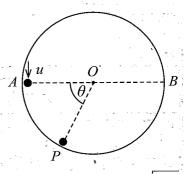
Another car Q that begins its journey with an initial speed of $10f \,\mathrm{m \, s^{-1}}$ from the point Q at t = 10 s, moves towards car P with a constant deceleration of f m s⁻² along the same road. It is given that the distance between P and Q when P comes to rest at A, is 125 m. Sketch velocity-time graphs for the motions of P and Q from t = 0 s until they meet, in the same diagram.

Show that


- (i) f = 10,
- (ii) cars P and Q meet at t = 17.5 s.
- (b) Three boats P, Q and R are moving in straight-line paths with uniform speeds. At a certain instant, the boat Q is located 450 m east of the boat P and the boat R is located $200\sqrt{3}$ metres north of the boat Q (See the figure). The boat P sails with the intention of meeting the boat O and the boat Q sails with the intention of meeting the boat R.

It is given that the boat P meets the boat Q in 45 seconds and the boat Q meets the boat R

Show that the speed of the boat P relative to the boat Q is 10 m s^{-1} , and find the distance between the boat P and the boat R at the instant when the boat Q meets the boat R.


12.(a) The vertical cross-section through the centres of mass of two smooth uniform wedges X, Y and a particle P is shown in the figure. AC, DE and EF are lines of greatest slope of the faces containing them with $B\hat{A}C = \alpha$ and $D\hat{E}F = \beta$ (< \alpha). The face containing AB of the wedge X of mass M_1 is placed on a smooth horizontal table. The face containing EF of the wedge Y of mass M_2 is placed on the face of X containing AC. The particle P of mass m is placed on DE. The system is released from rest. Write down equations sufficient to determine the acceleration

of the wedge X, while the wedge Y moves with its face containing EF touching the face of the wedge X containing AC and the particle P moves touching DE.

(b) The vertical cross-section perpendicular to the horizontal axis of a fixed hollow right-circular cýlinder of radius a with a smooth inner surface is shown in the adjoining figure.

The point O is its centre, and A and B are the ends of its horizontal diameter. A particle P of mass m is projected in the vertically downward direction from A on the inner surface of the cylinder with speed u. Let v be the speed of P when OP has turned through an angle θ with P is in contact with the cylinder. Show that $v^2 = u^2 + 2ga\sin\theta$.

It is given that P leaves the inner surface of the cylinder when $\theta = \frac{7\pi}{6}$. Show that $u = \sqrt{\frac{3ga}{2}}$

13. One end of a light elastic string of natural length a is attached to a fixed point O and the other end to a particle P of mass m, and P has been set to vertical motion. When it is moving vertically downward, it passes through the point A below O, where OA = a, its speed is $\sqrt{2ag}$. The particle comes to instantaneous rest at point B, A0 below A0. Show that the modulus of elasticity of the string is $\frac{3}{2}mg$.

Also, show that the equation of motion of P is given by $\ddot{x} + \omega^2 \left(x - \frac{5a}{3} \right) = 0$, where OP = x for x > a and ω (>0) is a constant to be determined.

Re-write the above equation of motion by taking $X = x - \frac{5a}{3}$.

Find the centre, amplitude and the period of this simple harmonic motion of the particle.

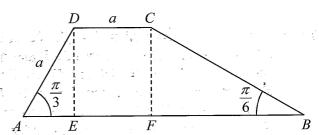
Using the formula $\dot{X}^2 = \omega^2(C^2 - X^2)$, where C is the amplitude, find the maximum speed of P. On its way up, show that P barely reaches O.

Show that the total time taken by P to move from B to O is $\sqrt{\frac{2a}{27g}}(2\pi + 3\sqrt{3})$.

If the above simple harmonic motion is initiated by pulling P down and releasing, state how far the string must be pulled from its natural length.

14.(a) Let OABC be a parallelogram with OA = a, OC = 2a and $A\hat{O}C = \frac{\pi}{3}$. Also, let **u** and **v** be the unit vectors in the directions of \overrightarrow{OA} and \overrightarrow{OC} respectively.

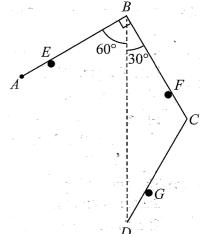
Show that $\overrightarrow{OD} = \frac{1}{2}a\mathbf{u} + 2a\mathbf{v}$, where D is the mid-point of BC.


Let E be the point on AB such that OD is perpendicular to DE.

Show that $\overrightarrow{DE} = \frac{a}{2}\mathbf{u} - \frac{a}{3}\mathbf{v}$.

Let F be the point of intersection of the extended lines OA and DE. Show that $\overrightarrow{OF} = \frac{7a}{2}\mathbf{u}$.

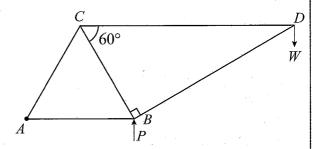
(b) Let ABCD be a trapezium with AB parallel to DC, $ABC = \frac{\pi}{6}$, $BAD = \frac{\pi}{3}$ and AD = DC = a.


The points E and F are on AB such that $AED = AFC = \frac{\pi}{2}$ (See the figure). Forces of magnitude P, αP , βP and γP act along AB, BC, DC and AD respectively, in the

directions indicated by the order of the letters. It is given that the resultant force of these is of magnitude $\sqrt{7}P$, and it passes through the points E and C in the sense from E to C. Find the values of α , β and γ .

Now, a couple is added to the system such that the line of action of the resultant of the new system passes through the point F. Find the moment of the couple added.

15. (a) Three uniform rods AB, BC and CD of equal length 4a and equal weight W are smoothly jointed at the end points B and C. The end A is smoothly hinged to a fixed point. The three rods are kept in equilibrium in a vertical plane by placing the rods on three smooth pegs E, F and G such that AE = CF = DG = a, $A\hat{B}D = 60^{\circ}$, $C\hat{B}D = 30^{\circ}$, and BD is vertical as shown in the figure.

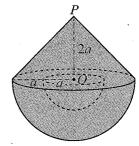


Show that

- (i) the magnitude of the reaction exerted on the rod CD by the peg G is $\frac{W}{3}$ and
- (ii) the magnitude of the reaction exerted on the rod BC by the peg F is $\frac{11W}{Q}$.

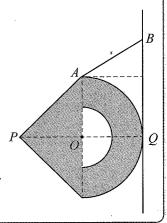
Also, find the reaction exerted on the rod BC by the rod AB at the joint B.

(b) The framework shown in the figure consists of five light rods AB, BC, CA, CD and DB that are smoothly jointed at their ends. It is given that AB = BC = CA = 2a, CBD = 90° and BCD = 60°. A load W is suspended at the joint D and the framework is smoothly hinged to a fixed point at A and kept in equilibrium in a vertical plane with AB horizontal, by a force P applied vertically upwards to it at the joint B.



- (i) Find the value of P.
- (ii) Draw a stress diagram using Bow's notation for the joints D, C and B.

Hence, find the stresses in the rods, stating whether they are tensions or thrusts.


16. Show that the centre of mass of a uniform solid hemisphere of radius a is at a distance $\frac{3}{8}a$ from its centre and the centre of mass of a uniform solid right-circular cone of height h is at a distance $\frac{1}{4}h$ from the centre of its base.

A hemispherical portion of radius a and centre O is carved out from a uniform solid hemisphere of radius 2a, centre O and density ρ . Now, a uniform solid right circular cone of base radius 2a and height 2a with density $\lambda \rho$ is rigidly fixed to the remaining portion of the hemisphere, as shown in the adjoining figure. Show that the centre of mass of the body S thus formed, lies at a distance $\frac{(48\lambda + 157)}{8(4\lambda + 7)}a$ from P, where P is the vertex of the solid cone of S.

Find the value of λ such that the centre of mass of S, lies at O. Now, suppose that λ has this value.

Let Q be the point at which the extended line PO meets the outer hemispherical surface of S. Also, let A be a point of the circular edge of S. The body S is kept in equilibrium against a rough vertical wall by means of a light inextensible string with one end attached to the point A and other end to a fixed point B on the vertical wall. In the equilibrium position, the outer hemispherical surface of S touches the wall at the point Q. The points O, A, B, P and Q lie on a vertical plane perpendicular to the wall (see the adjoining figure). Show that $\mu \ge 1$, where μ is the coefficient of friction between the outer hemispherical surface of S and the wall.

17.(a) A box B_1 contains 2 white balls and 3 black balls which are identical in all aspects except for their colours. 3 balls are transferred at random from box B_1 into an empty box B_2 . Then a ball is drawn at random from box B_2 .

Find the probability that

- (i) the ball drawn from box B_2 is white,
- (ii) 2 white balls and 1 black ball are transferred from box B_1 into box B_2 , given that the drawn ball from box B_2 is white.
- (b) The times taken to solve a puzzle by 20 students were coded by subtracting 10 from each of the times and then dividing by 2.

The frequency distribution of the coded data with 2 missing frequencies is given below:

Coded times (in minutes)	frequency
0-2	2
2-4	f_1
4-6	9
6-8	f_2
8-10	1

Estimated mean for the coded times is given to be 4.4 minutes. Show that $f_1 = 6$ and $f_2 = 2$. Estimate the standard deviation and the mode of the coded times.

Now, estimate the mean, the standard deviation and the mode of the actual times taken to solve the puzzle.

Department of Examinations - Sri Lanka

G.C.E. (A/L) Examination - 2024

10 - Combined Mathematics I

Marking Scheme

This has been prepared for the use of marking examiners. Changes would be made according to the views presented at the Chief/Assistant Examiners' meeting.

G. C. E (Advanced Level) Examination – 2024

10 - Combined Mathematics I

Distribution of Marks

Paper I

1

$$Part A = 10 \times 25 = 250$$

Part B =
$$05 \times 150$$
 = 750

$$= \frac{1000}{10}$$

Final marks
$$= 100$$

Common Techniques of Marking Answer Scripts.

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

- 1. Use a red color ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve color pen.)
- 2. Note down Examiner's Code Number and initials on the front page of each answer script.
- 3. Write off any numerals written wrong with a clear single line and authenticate the alterations with Examiner's initials.
- and write the final marks of each question as 4. Write down marks of each subsection in a / \ a rational number in a with the question number. Use the column assigned for Examiners to write down marks.

Example:	Question No. 03		
(i)		V	\ \ \
b.		₩	$\frac{4}{5}$
(ii)			$\overline{\wedge}$
		$\sqrt{}$	$\frac{3}{5}$
(iii)	***************************************		\bigwedge
		$\sqrt{}$	$\frac{3}{5}$
	***************************************	•	
03 (i)	4 + (ii) 3 + (iii) 3	Northead Addressed	10 15
	5 (11) 5		1.5

MCQ answer scripts: (Template)

- 1. Marking templets for G.C.E.(A/L) and GIT examination will be provided by the Department of Examinations itself. Marking examiners bear the responsibility of using correctly prepared and certified templates.
- 2. Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.
- 3. Place the template on the answer script correctly. Mark the right answers with a 'V' and the wrong answers with a 'X' against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage.

Structured essay type and assay type answer scripts:

- 1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.
- 2. Use the right margin of the overland paper to write down the marks.
- 3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.
- 4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

Preparation of Mark Sheets.

.

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore, add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II Marks in the paper II Column and wright the relevant details.

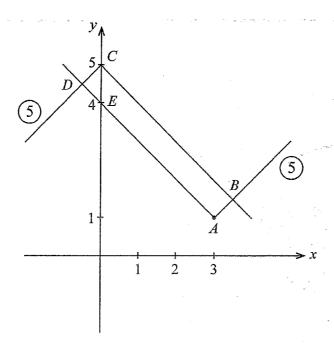
1. Using the Principle of Mathematical Induction, prove that $7^n - 1$ is divisible by 6 for all $n \in \mathbb{Z}^+$.

For n = 1, $7^n - 1 = 7 - 1 = 6$, and it is divisible by 6.

 \therefore The result is true for n=1. (5)

Take any $k \in \mathbb{Z}^+$ and assume that the result is true for n = k.

i.e. $7^k - 1$ is divisible by 6. $\boxed{5}$


 \therefore There exists $p \in \mathbb{Z}^+$ such that $7^k - 1 = 6p$. \bigcirc

Now, $7^{k+1}-1 = 7.7^k-1$ = 7(6p+1)-1= 42p+6= 6(7p+1), and this is divisible by 6.

Hence, if the result is true for n = k, the it is also true for n = k + 1. The result has already been proved for n = 1.

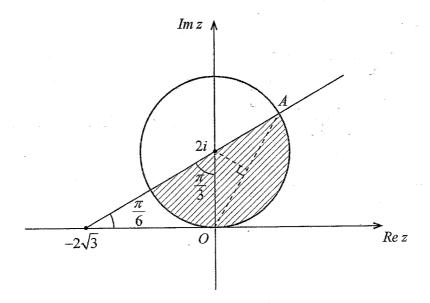
Hence, by the principle of Mathematical Induction, the result is true for all $n \in \mathbb{Z}^+$. (5)

2. Sketch the graphs of y = |x-3|+1 and y=5 |x| in the same diagram. Hence, find the area of the rectangular region enclosed by these graphs.

$$CD = 1\cos 45^{\circ} = \frac{1}{\sqrt{2}} \qquad 5$$

$$AD = DE + EA = 1\sin 45^{\circ} + \sqrt{3^2 + 3^2}$$

$$= \frac{1}{\sqrt{2}} + 3\sqrt{2} \qquad 5$$


$$= \frac{7}{\sqrt{2}}$$

 \therefore The required area $= CD \cdot AD$

$$=\frac{1}{\sqrt{2}}\cdot\frac{7}{\sqrt{2}}$$

$$=\frac{7}{2}$$
 area units. (5)

3. Shade in an Argand diagram, the region consisting of points that represent the complex numbers z satisfying the inequalities $|z-2i| \le 2$ and $0 \le \operatorname{Arg}(z+2\sqrt{3}) \le \frac{\pi}{6}$. Find the greatest value of |z| for the complex numbers z represented by the points in this shaded region.

Half line (5)

Circle touching the x-axis at O \bigcirc

Shading the correct region 5

The required greatest value of |z| = OA (5)

$$=2\times 2\sin\frac{\pi}{3}$$

$$= 2\sqrt{3}$$
 (5)

4. Show that the constant term in the expansion of $(1+x^3)(x-\frac{1}{\sqrt{x}})^9$ is 93.

The general term of the binomial expansion of
$$\left(x - \frac{1}{\sqrt{x}}\right)^9 = {}^9C_r x^r \left(\frac{1}{\sqrt{x}}\right)^{9-r}$$
 (5)
$$= {}^9C_r x^r \cdot x^{\left(\frac{r}{2} - \frac{9}{2}\right)}$$

$$= {}^{9}C_{r}x^{\left(\frac{3r}{2} - \frac{9}{2}\right)} \qquad \boxed{5}$$

- .. Constant terms occur in the expansion of $(1+x^3)\left(x-\frac{1}{\sqrt{x}}\right)^9$ when $\frac{3r}{2}-\frac{9}{2}=0$ and when $\frac{3r}{2}-\frac{9}{2}=3$.
- i.e. when r = 3 and when r = 1.

$$\therefore \text{ The required constant term} = {}^{9}C_{1} + {}^{9}C_{3} \qquad \boxed{5}$$

$$= \frac{9!}{8!} + \frac{9!}{3!6!}$$

$$= 9 + \frac{9 \times 8 \times 7}{2 \times 3}$$

$$= 9 + 84$$

$$= 93. \qquad \boxed{5}$$

5. Show that
$$\lim_{x \to 4} \frac{\left(\sqrt{x-3}-1\right)}{\left(x-4\right)^2} \sin\left(\sqrt{x}-2\right) = \frac{1}{8}$$
.

$$\lim_{x \to 4} \frac{\left(\sqrt{x-3}-1\right)}{\left(x-4\right)^2} \sin\left(\sqrt{x}-2\right)$$

$$= \lim_{x \to 4} \frac{\left(\sqrt{x-3}-1\right)}{\left(x-4\right)^2} \cdot \frac{\left(\sqrt{x-3}+1\right)}{\left(\sqrt{x-3}+1\right)} \cdot \sin\left(\sqrt{x}-2\right) \qquad (5)$$

$$= \lim_{x \to 4} \frac{\left(x-4\right)}{\left(x-4\right)^2 \left(\sqrt{x-3}+1\right)} \cdot \sin\left(\sqrt{x}-2\right)$$

$$= \lim_{x \to 4} \frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-3}+1\right)} \cdot \frac{\sin\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)} \qquad (5)$$

$$= \frac{1}{\left(\sqrt{4}+2\right)\left(\sqrt{1}+1\right)} \cdot 1 \qquad (5) + (5)$$

$$= \frac{1}{8}. \qquad (5)$$

6. The region enclosed by the curves $y = \frac{2}{x\sqrt[4]{4-x^2}}$, y = 0, x = 1 and $x = \sqrt{2}$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\pi(\sqrt{3}-1)$.

- 7. Let C be the curve given parametrically by $x = \ln t$ and $y = e^t + t \ln t$ for t > 0. Show that $\frac{dy}{dx} = t(e^t + \ln t + 1)$.
 - If the tangent drawn to the curve C at the point corresponding to t=1, passes through the point (1, a), show that a=1+2e.

 $x = \ln t$ and $y = e^t + t \ln t$ for t > 0.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t} \text{ and } \frac{\mathrm{d}y}{\mathrm{d}t} = e^t + \ln t + \frac{1}{t}$$
 (5)

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{(e^t + \ln t + 1)}{\frac{1}{t}}$$

$$= t(e^t + \ln t + 1).$$
 (5)

$$\frac{dy}{dx}\Big|_{t=1} = e + \ln 1 + 1 = e + 1.$$
 (5)

The point corresponding to t=1 is (0, e).

$$\therefore \frac{a-e}{1-0} = e \quad 1$$

$$\therefore a = 1 + 2e. \qquad (5)$$

8. Find the equations of the two straight lines passing through the point $A \equiv (-1, 2)$ having a perpendicular distance of 1 from the origin.

The equation of any line through $A \equiv (-1, 2)$ is of the form a(x+1) + b(y-2) = 0, where $a, b \in \mathbb{R}$ with $a^2 + b^2 \neq 0$.

Given:
$$\frac{\left|a-2b\right|}{\sqrt{a^2+b^2}} = 1$$
 (5)

$$\Leftrightarrow (a-2b)^2 = a^2 + b^2$$

$$\Leftrightarrow 4ab-3b^2=0$$

$$\Leftrightarrow b(4a-3b)=0$$

$$\Leftrightarrow b = 0 \text{ or } a = \frac{3b}{4}$$
 (5)

The required equations are a(x+1) = 0 or $\frac{3b}{4}(x+1) + b(y-2) = 0$.

So,
$$x = -1$$
 or $3x + 4y - 5 = 0$.

Aliter

x = -1 is one such line through $A \equiv (-1, 2)$. (5)

Let y = mx + c be any other line through $A \equiv (-1, 2)$.

Then 2 = m(-1) + c and so c = m + 2.

$$\therefore y = mx + m + 2. \qquad (5)$$

Given:
$$\frac{|m+2|}{\sqrt{m^2+1}} = 1$$
 (5)

$$\iff (m+2)^2 = m^2 + 1$$

$$\Leftrightarrow$$
 4m + 4 = 1

$$\Leftrightarrow m = -\frac{3}{4}.$$
 (5)

The other line is given by $y = \frac{3}{4}x + \frac{3}{4} = 2$.

i.e.
$$3x + 4y - 5 = 0$$
. 5

9. Let $A \equiv (-1, 1)$ and $B \equiv (3, 3)$. Write down the equation of the circle S with AB as a diameter. Show that the circle $x^2 + y^2 - 4x - 5y + 9 = 0$ touches the circle S internally at B.

The equation of S is

$$(x+1)(x-3)+(y-1)(y-3)=0.$$
 (5)

Let C_1 be the centre of S.

Then
$$C_1 \equiv (1, 2)$$
.
Its radius $r_1 = \sqrt{5}$ (5)

Let C_2 be the centre of $x^2 + y^2 - 4x - 5y + 9 = 0$.

Then
$$C_2 \equiv (2, \frac{5}{2})$$
.
Its radius $r_2 = \sqrt{(-2)^2 + \left(\frac{-5}{2}\right)^2 - 9} = \frac{\sqrt{5}}{2}$.

Now,
$$C_1 C_2 = \sqrt{1^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{5}}{2}$$
.

$$C_1 = r_1 - r_2$$
. (5)

For the verification that B lies on the second circle. (5)

 \therefore The circle $x^2 + y^2 - 4x - 5y + 9 = 0$ touches the circle S internally at B.

10. Show that
$$\frac{\cot \theta}{1+\sin \theta} + \frac{\cot \theta}{1-\sin \theta} = 4\csc 2\theta$$
.

Hence, solve
$$\frac{\cot \theta}{1 + \sin \theta} + \frac{\cot \theta}{1 - \sin \theta} = 8\cos 2\theta$$

$$\frac{\cot\theta}{1+\sin\theta} + \frac{\cot\theta}{1-\sin\theta}$$

$$= \frac{[(1-\sin\theta)+(1+\sin\theta)]\cot\theta}{1-\sin^2\theta}$$

$$=\frac{2\cot\theta}{\cos^2\theta}$$
 (5)

$$=\frac{2}{\sin\theta\cos\theta}$$

$$= 4\csc 2\theta.$$
 (5)

$$\frac{\cot\theta}{1+\sin\theta} + \frac{\cot\theta}{1-\sin\theta} = 8\cos 2\theta$$

$$4\csc 2\theta = 8\cos 2\theta \qquad \boxed{5}$$

$$2\cos 2\theta \sin 2\theta = 1$$

$$\sin 4\theta = 1$$
 (5)

$$\sin 4\theta = \sin \frac{\pi}{2}$$

$$\therefore 4\theta = n\pi \quad (+1)^n \frac{\pi}{2}, \text{ where } n \in \mathbb{Z}.$$

$$\therefore \theta = \frac{n\pi}{4} \quad (+1)^{\frac{n}{8}} \frac{\pi}{8}, \text{ where } n \in \mathbb{Z}.$$

11. (a) Let $f(x) = x^2 + 2x + c$, where $c \in \mathbb{R}$.

It is given that the equation f(x) = 0 has two real distinct roots. Show that c < 1.

Let α and β be the roots of f(x) = 0.

Show that $\alpha^2 + \beta^2 = 4 - 2c$.

Let $c \neq 0$ and $\lambda \in \mathbb{R}$. The quadratic equation with $\alpha + \frac{1}{\alpha}$ and $\beta + \frac{1}{\beta}$ as its roots is $2x^2 + 12x + \lambda = 0$. Find the values of c and λ .

(b) Let $f(x) = x^3 + px^2 + qx + p$, where $p, q \in \mathbb{R}$. The remainder when f(x) is divided by (x-2) is 36 more than the remainder when f(x) is divided by (x-1). Show that 3p + q = 29.

It is also given that (x + 1) is a factor of f(x). Show that p = 6 and q = 11, and factorize f(x) completely.

Hence, solve f(x) = 3(x+2).

- (5) (5)
- (a) $\Delta = 4 4c > 0$.

 $\therefore c < 1. \quad \boxed{5}$

15

 $\alpha + \beta = -2$ and $\alpha\beta = c$.

- (5)
- (5)

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta \qquad \boxed{5}$$
$$= 4 - 2c. \qquad \boxed{5}$$

20

 $\left(\alpha + \frac{1}{\alpha}\right) + \left(\beta + \frac{1}{\beta}\right) = \frac{12}{2} \quad (10)$

$$\alpha + \beta + \frac{\alpha + \beta}{\alpha \beta} = 6 \quad \boxed{5}$$

$$-2 - \frac{2}{c} = 6 \qquad \boxed{5}$$

$$\frac{2}{c} = 4$$

$$c = \frac{1}{2} \qquad \boxed{5}$$

$$\left(\alpha + \frac{1}{\alpha}\right)\left(\beta + \frac{1}{\beta}\right) = \frac{\lambda}{2}$$
 (10)

$$\alpha\beta + \frac{1}{\alpha\beta} + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\lambda}{2}$$

$$\alpha\beta + \frac{1}{\alpha\beta} + \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{\lambda}{2}$$
 (5)

$$c + \frac{1}{c} + \frac{4 - 2c}{c} = \frac{\lambda}{2}$$

$$\frac{1}{2} + 2 + \frac{4 - 2 \times \frac{1}{2}}{\frac{1}{2}} = \frac{\lambda}{2}$$
 (5)

$$\frac{5}{2} + 6 = \frac{\lambda}{2}$$

$$\lambda = 17. \quad (5)$$

50

(b)
$$f(x) = x^3 + px^2 + qx + p$$

The remainder when f(x) is divided by (x-2)

$$= f(2) = 8 + 4p + 2q + p = 8 + 5p + 2q.$$
 (5)

The remainder when f(x) is divided by (x-1)

$$= f(1) = 1 + p + q + p = 1 + 2p + q.$$
 (5)

It is given that f(2) = 36 + f(1). (5)

$$8 + 5p + 2q = 36 + 1 + 2p + q.$$

$$3p + q = 29$$
 ①

20

Since (x+1) is a factor of f(x), we have f(-1) = 0.

$$\therefore -1 + p - q + p = 0$$

$$\therefore 2p - q = 1 - 2 \qquad \boxed{5}$$

(1) and (2)
$$\Rightarrow$$
 $5p = 30$

$$\therefore p = 6 \quad (5)$$

Now (1)
$$\Rightarrow$$
 18 + $q = 29$

$$\therefore q = 11. \quad \boxed{5}$$

$$f(x) = x^3 + 6x^2 + 11x + 6$$

$$= (x+1)(x^2 + 5x + 6)$$

$$= (x+1)(x+2)(x+3)$$
5

$$f(x) = 3(x+2)$$

$$(x+1)(x+2)(x+3) = 3(x+2)$$

$$(x+2)[(x+1)(x+3)-3]=0$$
 (5)

$$(x+2)(x^2+4x) = 0$$

$$x(x+2)(x+4) = 0 \qquad \boxed{5}$$

$$x = 0 \text{ or } x = -2 \text{ or } x = -4.$$
 (5)

12.(a) The parents of a family decide to invite 6 out of 15 of their close relatives for a dinner. While the father has 5 close female relatives and 3 close male relatives, the mother has 3 close female relatives and 4 close male relatives.

Find the number of different ways in which

- (i) the father can invite 3 of his close female relatives and the mother can invite 3 of her close male relatives,
- (ii) the father can invite 3 of his close relatives and the mother can invite 3 of her close relatives so that 3 males and 3 females are invited.

(b) Let
$$U_r = \frac{1}{r(r+2)(r+4)}$$
 and $f(r) = \frac{1}{r(r+2)}$ for $r \in \mathbb{Z}^+$.

Determine the value of the real constant A such that $f(r) - f(r+2) = AU_r$ for $r \in \mathbb{Z}^+$.

Hence, show that
$$\sum_{r=1}^{n} U_r = \frac{11}{96} - \frac{1}{4(n+1)(n+3)} - \frac{1}{4(n+2)(n+4)}$$
 for $n \in \mathbb{Z}^+$.

Show further that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum.

Find the value of the real constant m such that $\lim_{n\to\infty}\sum_{r=1}^n (mU_r+U_{n+1-r})=\frac{11}{32}$.

12. (a)	Father		Mother		
	Female	Male	Female	Male	
	relatives	relatives	relatives	relatives	
	5	3	3	4	

- (i) The number of different ways, the father can invite 3 close female relatives = 5C_3 (5) The number of different ways, the mother can invite 3 close male relatives = 4C_3 (5)
- .. The number of different ways, the father can invite 3 close female relatives and the mother can invite 3 close male relatives = ${}^5C_3 \times {}^4C_3$ (5)

$$= \frac{5!}{3!2!} \times \frac{4!}{3!1!} = \frac{5 \times \cancel{A}'}{\cancel{Z}} \quad 4 \times 40.$$
 (5)

<u>(</u>	ii)		atting the			4, 3
	Father		Father	Mother	The number of different ways	7
			3 females	3 males	${}^{5}C_{3} \times {}^{4}C_{3} = 40$,
	(10) (2 females and 1 male	1 female and 2 males	${}^{5}C_{2} \times {}^{3}C_{1} \times {}^{3}C_{1} \times {}^{4}C_{2} = 540$	(10)
			1 female and 2 males	2 females and 1 male	${}^{5}C_{1} \times {}^{3}C_{2} \times {}^{3}C_{2} \times {}^{4}C_{1} = 180$	10)
		(3 males	3 females	${}^{3}C_{3} \times {}^{3}C_{3} = 1$	(5)

Answer =
$$40 + 540 + 180 + 1 = 761$$
. (5)

(b)
$$f(r) - f(r+2) = \frac{1}{r(r+2)} - \frac{1}{(r+2)(r+4)}$$
 (5)

$$= \frac{(r+4) - r}{r(r+2)(r+4)}$$
 (5)

$$= 4 \frac{1}{r(r+2)(r+4)}$$

$$= 4U_r$$
 (5)

$$\therefore A = 4.$$
 (5)

20

$$\therefore 4U_r = f(r) - f(r+2) \text{ for } r \in \mathbb{Z}^+.$$

$$r = 1$$
 : $4U_1 = f(1) - f(3)$

$$r = 2$$
 ; $4U_2 = f(2) - f(4)$ (5)

$$r = 3$$
 : $4U_3 = f(3) - f(5)$

r = n-2: $4U_{n-2} = f(n/2) - f(n)$

$$r = n-1$$
: $4U_{n-1} = f(n-1) - f(n+1)$ (5)

$$r = n$$
 : $4U_n = f(n) - f(n+2)$

$$4\sum_{r=1}^{n} U_r = f(1) + f(2) - f(n+1) - f(n+2)$$

$$= \frac{1}{3} + \frac{1}{8} - \frac{1}{(n+1)(n+3)} - \frac{1}{(n+2)(n+4)}$$
(10)

$$\therefore \sum_{r=1}^{n} U_r = \frac{11}{96} - \frac{1}{(n+1)(n+3)} - \frac{1}{(n+2)(n+4)}$$
 (5)

$$\lim_{n \to \infty} \sum_{r=1}^{n} U_r = \lim_{n \to \infty} \left\{ \frac{11}{96} - \frac{1}{4(n+1)(n+3)} - \frac{1}{4(n+2)(n+4)} \right\}$$

$$= \frac{11}{96}. \quad \boxed{5}$$

$$\therefore \sum_{r=1}^{\infty} U_r \text{ is convergent and its sum } = \frac{11}{96}.$$
 (5)

$$\lim_{n \to \infty} \sum_{r=1}^{n} \left(mU_r + U_{n+1-r} \right)$$

$$= \lim_{n \to \infty} \left(m \sum_{r=1}^{n} U_r + \sum_{r=1}^{n} U_{n+1-r} \right)$$

$$= \lim_{n \to \infty} \left(m \sum_{r=1}^{n} U_r + \sum_{r=1}^{n} U_r \right)$$

$$= (m \quad 1) \sum_{r=1}^{\infty} U_r$$

$$\therefore (m+1) \frac{11}{96} = \frac{11}{32} \quad (5)$$

$$\therefore m+1 = 3 \text{ and } m = 2. \quad (5)$$

13. (a) Let $a, b \in \mathbb{R}$, $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & a & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & a & b \\ 3 & b & a \end{pmatrix}$. It is given that $2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$. Show that a = 0 and b = 5.

With these values for a and b, let $C = AB^T$.

Find C and write down C^{-1} .

Find the matrix **D** such that **DC** = $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

(b) Let $z_1, z_2 \in \mathbb{C}$. Show that

(i)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

(ii)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

(iii)
$$z_1\overline{z_1} = |z_1|^2$$

Using the result that $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$ for $z_2 \neq 0$, show that if $|z_1| = 1$ and $z_1 \neq \pm 1$, and also if $\frac{z_1 + z_2}{1 + z_1 z_2}$ is real, then $|z_2| = 1$.

(c) Express $\sqrt{3} + i$ is the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $0 < \theta < \frac{\pi}{2}$.

Using De Moivre's theorem, show that $\frac{\left(\sqrt{3} + i\right)^{24}}{2^{23}(1+i)} = 1$ i.

(a)
$$2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$$
.

$$2\begin{pmatrix} 1 & 2 & -1 \\ 3 & a & 2 \end{pmatrix} + \begin{pmatrix} 0 & a & b \\ 3 & b & a \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$$

$$\underbrace{10} \begin{pmatrix} 2 & 4+a & -2+b \\ 6+3 & 2a+b & 4+a \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$$

$$\Leftrightarrow 4+a=4$$
, $-2+b=3$ and $2a+b=5$ 10 for any two.

$$\Leftrightarrow a = 0 \text{ and } b = 5.$$
 (5)

$$\mathbf{C} = \mathbf{A}\mathbf{B}^{T}$$

$$= \begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 0 & 5 \\ 5 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -5 & 13 \\ 10 & 9 \end{pmatrix} \quad \boxed{10}$$

$$\mathbf{C}^{-1} = -\frac{1}{175} \begin{pmatrix} 9 & -13 \\ -10 & -5 \end{pmatrix}. \quad \boxed{10}$$

$$\mathbf{DC} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\therefore \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{C}^{-1} \qquad \boxed{5}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{bmatrix} \frac{1}{175} \begin{pmatrix} 9 & -13 \\ -10 & -5 \end{bmatrix} \end{bmatrix}$$

$$= \frac{1}{175} \begin{pmatrix} 9 & -13 \\ -20 & -10 \end{pmatrix}. \qquad \boxed{10}$$

15

(b) Let
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$ where $x_1, x_2, y_1, y_2 \in \mathbb{R}$.

(i)
$$\overline{z_1 + z_2} = \overline{(x_1 + x_2) + i(y_1 + y_2)}$$

$$= (x_1 + x_2) - i(y_1 + y_2) \qquad \boxed{5}$$

$$= (x_1 - iy_1) + (x_2 - iy_2)$$

$$= \overline{z_1} \quad \overline{z_2} + . \qquad \boxed{5}$$

(ii)
$$\overline{z_1 z_2} = \overline{(x_1 + iy_1) + (x_2 + iy_2)}$$

 $= \overline{(x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)}$
 $= (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + y_1 x_2)$ $\overline{z_1} \cdot \overline{z_2} = (x_1 - iy_1)(x_2 - iy_2)$
 $= (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + y_1 x_2)$ $\overline{z_1} \cdot \overline{z_2} = \overline{z_1} \overline{z_2}$. $\overline{z_2} = \overline{z_1} \overline{z_2}$.

(iii)
$$z_1\overline{z_1} = (x_1 \quad iy_1)(x_1 \quad iy_1)$$

$$= x_1^2 \quad y_1^2 \qquad \boxed{5}$$

$$= |z_1|^2 . \qquad \boxed{5}$$

10

$$\overline{\left(\frac{z_1 + z_2}{1 + z_1 z_2}\right)} = \frac{z_1 + z_2}{1 + z_1 z_2} \qquad \boxed{5}$$

$$\Rightarrow \frac{\overline{z}_1 + \overline{z}_2}{1 + \overline{z}_1 \overline{z}_2} = \frac{z_1 + z_2}{1 + z_1 z_2}$$
 (5)

$$\Rightarrow \quad \overline{z_1} + \overline{z_1}z_1z_2 + \overline{z_2} + \overline{z_2}z_1z_2 = z_1 + z_2 + \overline{z_1}\overline{z_2}z_1 + \overline{z_1}\overline{z_2}z_2 = 0$$

$$\Rightarrow \quad \overline{z}_1 + \left| \overline{z}_1 \right|^2 z_2 + \overline{z}_2 + z_1 \left| \overline{z}_2 \right|^2 = z_1 + z_2 + \overline{z}_2 \left| \overline{z}_1 \right|^2 + \overline{z}_1 \left| \overline{z}_2 \right|^2 = 0$$
 5

$$\Rightarrow \ \overline{z}_1 + \overline{z}_2 + \overline{z}_2 + \overline{z}_1 |z_2|^2 = z_1 + z_2 + \overline{z}_2 + \overline{z}_1 |z_2|^2 = 0$$

$$\Rightarrow (z_1 - \overline{z}_1) (|\overline{z}_2|^2 - 1) = 0 \qquad (5)$$

$$\Rightarrow |z_2|^2 - 1 = 0 \quad (\because \overline{z_1} \quad z_1) \neq$$

$$\Rightarrow |z_2|^2 - 1 = 0 \quad (\because \overline{z_1} \quad z_1) \neq$$

$$\Rightarrow |z_2| = 1. \quad (5)$$

$$(|z_1| = 1 \text{ and } z_1 \quad 1) \neq \pm$$

(c)
$$\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) + 5$$

$$= 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) + 5$$

$$r=2$$
 and $\theta=\frac{\pi}{6}$.

$$\frac{\sqrt{3}+i}{2^{23}(1+i)} = \frac{2^{24}(\cos 4\pi + i\sin 4\pi)}{2^{23}(1+i)} \qquad \boxed{5}$$

$$= \frac{2}{1+i} \frac{1-i}{1-i} \qquad \boxed{5}$$

$$= \frac{2(1-i)}{2}$$

$$= 1-i. \qquad \boxed{5}$$

14.(a) Let $f(x) = \frac{px+q}{(x-1)(x-2)}$ for $x \in \mathbb{R} - \{1, 2\}$, where $p, q \in \mathbb{R}$. It is given that the graph of y = f(x) has a stationary point at (0, 1). Show that p = -3 and q = 2.

For these values of p and q, show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{x(3x-4)}{(x-1)^2(x-2)^2}$ for $x \neq 1$, 2, and find the intervals on which f(x) is decreasing and the intervals on which f(x) is increasing.

Sketch the graph of y = f(x) indicating the asymptotes and the turning points.

Hence, find the number of real solutions to the equation $x^2(x-1)(x-2) = 2-3x$.

(b) A cylinder with a top and a bottom is made to have a volume of 1024π cm³. Let r cm be the radius of the cylinder. Show that the total surface area S cm² of the cylinder is given by $S = 2\pi \left(\frac{1024}{r} + r^2\right)$ for r > 0.

Show that S is minimum when r = 8.

(a) Since
$$f(0) = 1$$
, we have $\frac{q}{2} = 1$.

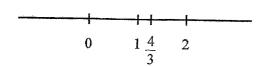
$$\therefore q = 2$$
 (5)

$$f'(x) = \frac{(x-1)(x-2)p - (px+q)(x-1+x-2)}{(x-1)^2(x-2)^2} \quad \text{(10) for } x \neq 1, 2.$$

Since f'(0) = 0, we have 2p - q(-3) = 0. (5)

$$\therefore 2p = -3q$$

$$= -6$$


$$\therefore p = -3$$
(5)

$$f'(x) = \frac{-3(x^2 - 3x + 2) - (-3x + 2)(2x - 3)}{(x - 1)^2(x - 2)^2}$$

$$= \frac{-3x^2 + 9x - 6 + 6x^2 - 13x + 6}{(x - 1)^2(x - 2)^2}$$

$$= \frac{3x^2 - 4x}{(x - 1)^2(x - 2)^2}$$

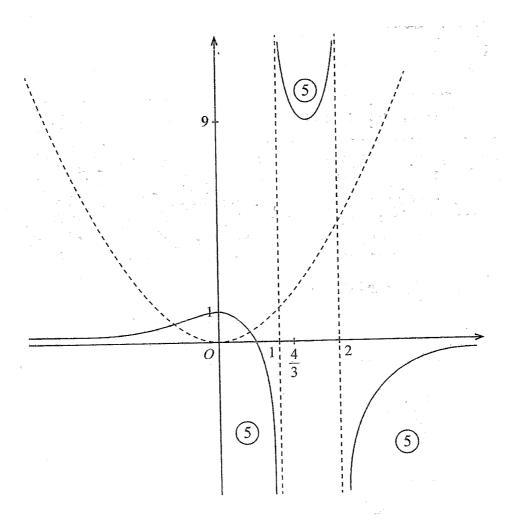
$$= \frac{x(3x - 4)}{(x - 1)^2(x - 2)^2}$$
 5 for $x \ne 1, 2$.
$$f'(x) = 0 \Leftrightarrow x = 0 \text{ or } x = \frac{4}{3}.$$
 5

		* V V				
	$-\infty < x < 0$	0 < x < 1	$1 < x < \frac{4}{3}$	$\frac{4}{3} < x < 2$	$2 < x < \infty$	
Sign of $f'(x) = \frac{x(3x-4)}{(x-1)^2(x-2)^2}$	(-)(-) (+)	(+)(-)	(+)(-)	(+)(+) (+)	(+)(+) (+)	
	= (+) (5)	=(-) (5)	= (-) (5)	= (+) (5)	= (+) (5)	
f(x)	17	7	1	11	1	10)

Increasing on : $(-\infty, 0]$, $[\frac{4}{3}, 2)$ and $(2, \infty)$

Decreasing on : (0, 1] and $[1, \frac{4}{3})$

50

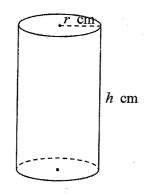

Local maximum at (0, 1) (5)

Local minimum at $(\frac{4}{3}, 9)$ (5)

$$\lim_{x \to 1^{-}} f(x) = -\infty \quad , \quad \lim_{x \to 1^{+}} f(x) = \infty$$

$$\lim_{x\to 2^{-}} f(x) = \infty \quad , \quad \lim_{x\to 2^{+}} f(x) = -\infty$$

$$\lim_{x\to\pm\infty}f(x)=0.$$
 (5)


$$x^2(x-1)(x-2) = 2 - 3x$$

$$\Leftrightarrow x^2 = \frac{2 - 3x}{(x - 1)(x - 2)}$$
 (5)

$$\Leftrightarrow x^2 = f(x)$$

 \therefore The number of real solutions = 2. (5)

(b)

$$S = 2\pi rh \quad 2\pi r^2 +$$

$$\pi r^2 h = 1024\pi$$

$$\therefore h = \frac{1024}{r^2} \qquad (5)$$

$$\therefore S = 2\pi r \frac{1024}{r^2} + 2\pi r^2$$

$$=2\pi\left(\frac{1024}{r} \quad r^2\right) \quad (5)$$

10

$$\frac{\mathrm{d}S}{\mathrm{d}r} = 2\pi \left(-\frac{1024}{r^2} + 2r \right) \qquad (5)$$

$$\frac{\mathrm{d}S}{\mathrm{d}r} = 0 < (5) \Rightarrow \frac{1024}{r^2} \quad 2r$$

$$\Leftrightarrow r^3 = 512$$

$$\Leftrightarrow r = 8$$
. (5)

$$\frac{\mathrm{d}S}{\mathrm{d}r} < 0 \quad \text{ for } 0 < r < 8.$$

$$\frac{\mathrm{d}S}{\mathrm{d}r} > 0$$
 for $r > 8$.

$$\therefore$$
 S is minimum when $r = 8$.

15.(a) Find the values of the real constants A and B such that $3t^2 + 4 = A(t^2 - 2t + 4) + Bt(t + 1)$ for all $t \in \mathbb{R}$.

Hence or otherwise, find $\int \frac{3t^2 + 4}{(t+1)(t^2 - 2t + 4)} dt$.

- (b) Using the substitution $u = x + \sqrt{x^2 + 3}$, show that $\int_0^1 \frac{1}{\sqrt{x^2 + 3}} dx = \frac{1}{2} \ln 3$. Let $J = \int_0^1 \sqrt{x^2 + 3} dx$. Using integration by parts, show that $2J = 2 + \int_0^1 \frac{3}{\sqrt{x^2 + 3}} dx$. **Deduce** that $J = 1 + \frac{3}{4} \ln 3$.
- (c) Using the formula $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx, \text{ where } a \text{ is a constant, show that}$ $\int_{0}^{\frac{\pi}{4}} \ln\left(\frac{\cos x}{\cos x + \sin x}\right) dx = \frac{\pi}{8} \ln\left(\frac{1}{2}\right).$
- (a) $3t^2 + 4 = A(t^2 2t + 4) + Bt(t + 1)$ = $(A + B)t^2 + (-2A + B)t + 4A$ 5

Coefficients of t^2 : 3 = A + B

Coefficients of $t^1 : 0 = -2A + B$

Coefficients of t^0 : 4 = 4A

$$\therefore A = 1 \text{ and } B = \overset{\mathtt{a}}{2}.$$

$$\frac{3t^2 + 4}{(t+1)(t^2 - 2t + 4)} = \frac{1}{t+1} \frac{2t}{t^2 - 2t + 4}. \quad \boxed{10}$$

$$\int \frac{3t^2 + 4}{(t+1)(t^2 - 2t + 4)} dt = \int \left\{ \frac{1}{t+1} \frac{2t - 2 + 2}{t^2 - 2t + 4} \right\} dt$$

$$= \int \frac{1}{t+1} dt \int \frac{2t - 2}{t^2 - 2t + 4} dt \quad 2 \int \frac{1}{(t-1)^2 + 3} dt$$

$$= \ln|t| \quad \frac{1}{t+1} \ln|t^2| \quad 2t \quad 4 \quad \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{t-1}{\sqrt{3}} \right) + C, \quad \boxed{5}$$

$$\boxed{5} \quad \boxed{5} \quad \boxed{5}$$

where C is an arbitrary constant.

30

(b)
$$u = x + \sqrt{x^2 + 3}$$
.

$$+\frac{\mathrm{d}u}{\mathrm{d}x} = 1$$
 $\frac{x}{\sqrt{x^2 + 3}}$ $\frac{u}{\sqrt{x^2 + 3}}$ (5)

$$\therefore \frac{1}{\sqrt{x^2 + 3}} dx = \frac{1}{u} du$$

$$x = 0 \implies u = \sqrt{3} \ . \tag{5}$$

$$x = 1 \implies u = 3$$
.

So,
$$\int_{0}^{1} \frac{1}{\sqrt{x^2 + 3}} dx = \int_{\sqrt{3}}^{3} \frac{1}{u} du = \ln|u| \Big|_{\sqrt{3}}^{3} = \ln 3 \ln \sqrt{3}$$
(5) (5)

$$= \ln \sqrt{3} \quad \frac{1}{2} \ln 3 = 5$$

$$J = \int_{0}^{1} \sqrt{x^{2} + 3} \, dx = x\sqrt{x^{2} + 3} \Big|_{0}^{1} - \int_{0}^{1} \frac{x^{2}}{\sqrt{x^{2} + 3}} \, dx \qquad \boxed{10}$$
$$= 2 \int_{0}^{1} \frac{x^{2} + 3 - 3}{\sqrt{x^{2} + 3}} \, dx \qquad \boxed{5}$$

$$\frac{3t^2 + 4}{(t+1)(t^2 - 2t + 4)} = \frac{1}{t+1} \frac{2t}{t^2 - 2t + 4}.$$

$$\int \frac{3t^2 + 4}{(t+1)(t^2 - 2t + 4)} dt = \int \left\{ \frac{1}{t+1} \frac{2t - 2 + 2}{t^2 - 2t + 4} \right\} dt$$

$$= \int \frac{1}{t+1} dt \int \frac{2t - 2}{t^2 - 2t + 4} dt \quad 2 \int \frac{1}{(t-1)^2 + 3} dt$$

$$= \ln|t| + \ln|t|^2 + 2t \quad 4 = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{t-1}{\sqrt{3}}\right) + C,$$

$$(5) \qquad (5) \qquad (5)$$

where C is an arbitrary constant.

30

(b)
$$u = x + \sqrt{x^2 + 3}$$
.

$$+\frac{\mathrm{d}u}{\mathrm{d}x} = 1$$
 $\frac{x}{\sqrt{x^2 + 3}}$ $\frac{u}{\sqrt{x^2 + 3}}$ (5)

$$\therefore \frac{1}{\sqrt{x^2 + 3}} dx = \frac{1}{u} du$$

$$x = 0 \implies u = \sqrt{3} \ . \tag{5}$$

$$x = 1 \implies u = 3$$
.

So,
$$\int_{0}^{1} \frac{1}{\sqrt{x^2 + 3}} dx = \int_{\sqrt{3}}^{3} \frac{1}{u} du = \ln|u| \Big|_{\sqrt{3}}^{3} = \ln 3 \quad \ln \sqrt{3}$$
(5) (5)

$$= \ln \sqrt{3} \quad \frac{1}{2} \ln 3 = 5$$

$$J = \int_{0}^{1} \sqrt{x^{2} + 3} \, dx = x \sqrt{x^{2} + 3} \Big|_{0}^{1} - \int_{0}^{1} \frac{x^{2}}{\sqrt{x^{2} + 3}} \, dx \qquad \boxed{10}$$
$$= 2 \int_{0}^{1} \frac{x^{2} + 3 - 3}{\sqrt{x^{2} + 3}} \, dx \qquad \boxed{5}$$

$$- : J = 2 \int_{0}^{1} \sqrt{x^{2} + 3} \, dx \int_{0}^{1} \frac{3}{\sqrt{x^{2} + 3}} \, dx \qquad \boxed{10}$$

$$\Rightarrow 2J = 2 \int_0^1 \frac{3}{\sqrt{x^2 + 3}} \, \mathrm{d}x \,. \qquad \boxed{5}$$

$$J = 1 + \frac{3}{2} \frac{1}{2} \ln 2$$

$$= 1 \frac{3}{4} \ln 2 \quad \boxed{10}$$

10

(c) Let
$$I = \int_{0}^{\frac{\pi}{4}} \ln \left(\frac{\cos x}{\cos x + \sin x} \right) dx$$
.

Then
$$I = \int_{0}^{\frac{\pi}{4}} \ln \left(\frac{\cos\left(\frac{\pi}{4} - x\right)}{\cos\left(\frac{\pi}{4} - x\right) + \sin\left(\frac{\pi}{4} - x\right)} \right) dx$$
 (5)

$$= \int_{0}^{\frac{\pi}{4}} \ln \left(\frac{\cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \sin x}{\cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \cos x - \cos \frac{\pi}{4} \sin x} \right) dx \qquad \boxed{10}$$

$$= \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{\cos x + \sin x}{2\cos x}\right) dx \qquad (5)$$

$$= \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{1}{2}\right) dx \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{\cos x}{\cos x + \sin x}\right) dx \qquad \boxed{10}$$

$$\therefore = I \quad \ln\left(\frac{1}{2}\right) x \Big|_{0}^{\frac{\pi}{4}} \quad I. - \boxed{5}$$

$$\Rightarrow 2I = \ln\left(\frac{1}{2}\right) \frac{\pi}{4}$$

$$\therefore I = \frac{\pi}{8} \ln \left(\frac{1}{2} \right).$$
 (5)

16. Let $A \equiv (1, 2)$ and $B \equiv (a, b)$, where $a, b \in \mathbb{R}$. It is given that the perpendicular bisector l of the line segment AB has the equation x + y - 4 = 0. Find the values of a and b.

Let $C \equiv (3, 1)$. Show that the point C lies on the line l and find $A\hat{C}B$.

Let S be the circle through the points A, B and C. Show that the centre of S is given by $\left(\frac{13}{6}, \frac{11}{6}\right)$ and find the equation of S.

Hence, find the equation of the circle passing through the points A, B and the point $D \equiv (0, 3)$.

The mid-point of $AB \equiv \left(\frac{1+a}{2}, \frac{2+b}{2}\right)$. (5)

This point lies on l.

S

$$\therefore \frac{1+a}{2} + \frac{2+b}{2} - 4 = 0$$

Also, l is perpendicular to AB.

(5)

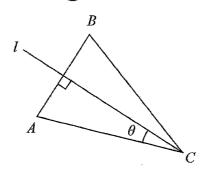
$$\therefore \left(\frac{b-2}{a-1}\right) \times (-1) = -1.$$
 (5)

$$\therefore b-2=a-1$$

:.
$$b-a=1$$
 _____ ② (5)

Now, ① and ② give us a = 2 and b = 3.

5) (


So, $A \equiv (1, 2)$, $B \equiv (2, 3)$ and $C \equiv (3, 1)$.

35

Substitute x = 3 and y = 1 in x + y - 4 = 0. (5)

L.H.S. =
$$3 + 4 - 1$$

= $0 = \text{R.H.S.}$

 \therefore C lies on l. (5)

Let the angle between AC and l be θ .

Then θ is acute.

The slope of $AC = \frac{1}{2}$. (5)

$$\tan \theta = \left| \frac{-\frac{1}{2} - (-1)}{1 + \left(-\frac{1}{2}\right) \times (-1)} \right| = \frac{1}{3}$$
 (10)

$$\theta = \tan^{-1}\left(\frac{1}{3}\right)$$
. (5)

$$\therefore A\hat{C}B = 2\theta \quad 2\tan^{-1}\left(\frac{1}{3}\right). \qquad \boxed{5}$$

35

Let m be the perpendicular bisector of AC.

The slope of m = 2. (5)

The mid-point of $AC \equiv \left(2, \frac{3}{2}\right)$. (5)

The equation of $m: y-\frac{3}{2}=2(x+2)$ (5)

i.e.
$$y-2x+\frac{5}{2}=0$$
.

The centre of S is the point of intersection of l and m. (5)

Solving x+y-4=0 and $y-2x+\frac{5}{2}=0$ simultaneously, (5) we get 3x=4 $\frac{5}{2}$.

$$\therefore x = \frac{16}{3} \text{ and } y = 4 + \frac{13}{6} + \frac{11}{6}.$$

 \therefore The centre of $S \equiv \left(\frac{13}{6}, \frac{11}{6}\right)$.

The radius of
$$S = \sqrt{\left(\frac{13}{6} - 1\right)^2 + \left(\frac{11}{6} - 2\right)^2}$$
 (10)

$$= \sqrt{\frac{49}{36} + \frac{1}{36}}$$

$$= \sqrt{\frac{25}{18}}$$
 (5)

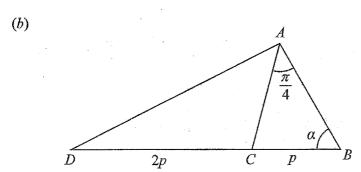
$$\therefore \text{ The equation of } S: \left(x - \frac{13}{6}\right)^2 + \left(y - \frac{11}{6}\right)^2 = \frac{25}{18}. \tag{10}$$
$$x^2 + y^2 - \frac{13}{3}x - \frac{11}{3}y + \frac{20}{3} = 0$$

$$\therefore \text{ The equation of } AB: y-2=1(x-1)$$
i.e. $x-y+1=0$

The equation of any circle through A and B is given by $\left(x - \frac{13}{6}\right)^2 + \left(y - \frac{11}{6}\right)^2 - \frac{25}{18} + \lambda(x - y + 1) = 0$, where $\lambda \in \mathbb{R}$.

For this to go through $D \equiv (0, 3)$, we must have $\left(\frac{13}{6}\right)^2 + \left(\frac{7}{6}\right)^2 - \frac{25}{18} + \lambda(-2) = 0$.

$$\lambda = \frac{21}{9} \quad \frac{7}{3} = \qquad \boxed{5}$$


 \therefore The required equation is $x^2 + y^2 - 2x - 6y + 9 = 0$.

17.(a) Express $6\cos 2x - 8\sin 2x$ in the form $R\cos(2x + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

Hence, solve $6\cos 2x - 8\sin 2x = 5$.

Express $24\cos^2 x - 32\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where $a, b, c \in \mathbb{R}$ are constants to be determined.

Deduce the minimum value of $24\cos^2 x - 32\sin x \cos x$.

In the triangle ABC shown in the figure, BC = p, $B\hat{A}C = \frac{\pi}{4}$ and $A\hat{B}C = \alpha$. The point D lies on the extended line BC such that CQ = 2p.

Show that $AB = p(\cos \alpha + \sin \alpha)$.

Find AD^2 in terms of p and α .

Deduce that if AD = 3p, then $\alpha = \tan^{-1}(5)$.

(c) Solve the equation $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$.

(a)
$$6\cos 2x - 8\sin 2x$$
 $\sqrt{6^2 + 8^2} = 10$

$$=10\left(\frac{6}{10}\cos 2x - \frac{8}{10}\sin 2x\right) \qquad \boxed{5}$$

$$=10\left(\frac{3}{5}\cos 2x - \frac{4}{5}\sin 2x\right)$$

= $10(\cos\alpha\cos 2x - \sin\alpha\sin 2x)$, where $0 < \alpha < \frac{\pi}{2}$ is such that $\cos\alpha = \frac{3}{5}$ and $\sin\alpha = \frac{4}{5}$.

 $=10\cos(2x \quad \alpha)$. (5)

$$\therefore$$
 $R = 10$ and $\alpha = \tan^{-1}\left(\frac{4}{3}\right)$. (5)

 $6\cos 2x - 8\sin 2x = 5$

$$10\cos(2x+a)=5 \qquad (5)$$

$$\therefore \cos(2x+\alpha) = \frac{1}{2} = \cos\frac{\pi}{3} \qquad \boxed{5}$$

$$2x + \alpha = 2n\pi$$
 $\frac{\pi}{3}$, where $n \in \mathbb{Z}$. $\boxed{5}$

$$\therefore x = n\pi \frac{\alpha}{2} \pm \frac{\pi}{6}, \text{ where } n \in \mathbb{Z}.$$

20

 $24\cos^2 x - 32\sin x \cos x$

$$=24\left(\frac{\cos 2x+1}{2}\right)-32\times\frac{1}{2}\sin 2x \qquad \boxed{10}$$

$$= 12\cos 2x - 16\sin 2x + 12$$

$$\therefore a = 12, b = -16 \text{ and } c = 12.$$
 (5)

15

 $24\cos^2 x - 32\sin x \cos x$

$$= 12\cos 2x - 16\sin 2x + 12$$

$$= 2(6\cos 2x - 8\sin 2x) + 12$$

$$= 20\cos(2x+\alpha) + 12 \qquad \boxed{5}$$

$$\min = -1$$

-7

$$\therefore \text{ The required minimum} = -20 + 12$$
$$= -8. \qquad (5)$$

(b) Sine Rule for the $\triangle ABC$:

$$\frac{AB}{\sin\left(\frac{\pi}{4} + \alpha\right)} = \frac{p}{\sin\frac{\pi}{4}} \qquad \text{(10)}$$

$$\therefore AB = \sqrt{2}p \left(\sin\frac{\pi}{4}\cos\alpha + \cos\frac{\pi}{4}\sin\alpha\right) \qquad (5)$$

$$=\sqrt{2}p\left(\frac{1}{\sqrt{2}}\cos\alpha+\frac{1}{\sqrt{2}}\sin\alpha\right)$$

$$= p(\cos\alpha \sin\alpha). \quad (5)$$

20

Cosine Rule for the $\triangle ABD$:

$$AD^2 = AB^2 + BD^2 - 2AB \cdot BD\cos\alpha \qquad \boxed{5}$$

$$= p^2(\cos\alpha \sin\alpha)^2 \quad 9p^2 + 2p(\cos\alpha \sin\alpha) \quad 3p\cos\alpha \quad (5)$$

Suppose that AD = 3p.

Then
$$9p^2 = p^2(\cos\alpha \sin\alpha)^2$$
 $9p^2 + 6p^2(\cos\alpha \sin\alpha)\cos\alpha$ (5)

$$\therefore (\cos \alpha + \sin \alpha)^2 - 6(\cos \alpha + \sin \alpha)\cos \alpha = 0$$

$$\Rightarrow \cos \alpha + \sin \alpha = 6\cos \alpha \qquad (0 < \alpha < \frac{\pi}{2})$$

$$\Rightarrow \sin \alpha = 5\cos \alpha$$

$$\Rightarrow \tan \alpha = 5$$

$$\Rightarrow \alpha = \tan^{-1}(5)$$
. $\boxed{5}$

12.(a) The parents of a family decide to invite 6 out of 15 of their close relatives for a dinner. While the father has 5 close female relatives and 3 close male relatives, the mother has 3 close female relatives and 4 close male relatives.

Find the number of different ways in which

- (i) the father can invite 3 of his close female relatives and the mother can invite 3 of her close male relatives,
- (ii) the father can invite 3 of his close relatives and the mother can invite 3 of her close relatives so that 3 males and 3 females are invited.

(b) Let
$$U_r = \frac{1}{r(r+2)(r+4)}$$
 and $f(r) = \frac{1}{r(r+2)}$ for $r \in \mathbb{Z}^+$.

Determine the value of the real constant A such that $f(r) - f(r+2) = AU_r$ for $r \in \mathbb{Z}^+$.

Hence, show that
$$\sum_{r=1}^{n} U_r = \frac{11}{96} - \frac{1}{4(n+1)(n+3)} - \frac{1}{4(n+2)(n+4)}$$
 for $n \in \mathbb{Z}^+$.

Show further that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum.

Find the value of the real constant m such that $\lim_{n\to\infty}\sum_{r=1}^n (mU_r+U_{n+1-r})=\frac{11}{32}$.

- Father Mother

 Female Male Female Male relatives relatives relatives relatives

 5 3 3 4
 - (i) The number of different ways, the father can invite 3 close female relatives = 5C_3 (5) The number of different ways, the mother can invite 3 close male relatives = 4C_3 (5)
 - .. The number of different ways, the father can invite 3 close female relatives and the mother can invite 3 close male relatives = ${}^5C_3 \times {}^4C_3$ (5)

$$= \frac{5!}{3!2!} \times \frac{4!}{3!1!} = \frac{5 \times \cancel{A}}{\cancel{2}} \quad 4 \times 4\theta.$$
 5

(ii)				h ₊ .
	Father	Mother	The number of different ways	
	3 females	3 males	$^{5}C_{3} \times ^{4}C_{3} = 40$	
(10)	2 females and 1 male	1 female and 2 males	${}^{5}C_{2} \times {}^{3}C_{1} \times {}^{3}C_{1} \times {}^{4}C_{2} = 540$	10
	1 female and 2 males	2 females and 1 male	${}^{5}C_{1} \times {}^{3}C_{2} \times {}^{3}C_{2} \times {}^{4}C_{1} = 180$	10
3.0 m	3 males	3 females	${}^{3}C_{3} \times {}^{3}C_{3} = 1$	(5)

Answer =
$$40 + 540 + 180 + 1 = 761$$
. $\boxed{5}$

(b)
$$f(r) - f(r+2) = \frac{1}{r(r+2)} - \frac{1}{(r+2)(r+4)}$$
 (5)

$$= \frac{(r+4) - r}{r(r+2)(r+4)}$$
 (5)

$$= 4 \frac{1}{r(r+2)(r+4)}$$

$$= 4U_r$$
 (5)

$$\therefore A = 4. \qquad \boxed{5}$$

20

$$\therefore 4U_r = f(r) - f(r+2) \text{ for } r \in \mathbb{Z}^+.$$

$$r = 1$$
 : $4U_1 = f(1) - f(3)$

$$r = 1$$
 : $4U_1 = f(1) - f(3)$
 $r = 2$: $4U_2 = f(2) - f(4)$ 5

$$r = 3$$
 : $4U_3 = f(3) - f(5)$

r = n-2: $4U_{n-2} = f(n/2) - f(n)$

$$r = n-1$$
: $4U_{n-1} = f(n-1) - f(n+1)$ (5)

$$r = n \qquad : \quad 4U_n \qquad = \qquad f(n) - f(n+2)$$

$$4\sum_{r=1}^{n} U_r = f(1) + f(2) - f(n+1) - f(n+2)$$

$$= \frac{1}{3} + \frac{1}{8} - \frac{1}{(n+1)(n+3)} - \frac{1}{(n+2)(n+4)}$$
(10)

$$\therefore \sum_{r=1}^{n} U_r = \frac{11}{96} - \frac{1}{(n+1)(n+3)} - \frac{1}{(n+2)(n+4)}$$
 (5)

$$\lim_{n \to \infty} \sum_{r=1}^{n} U_r = \lim_{n \to \infty} \left\{ \frac{11}{96} - \frac{1}{4(n+1)(n+3)} - \frac{1}{4(n+2)(n+4)} \right\}$$

$$= \frac{11}{96}. \quad \boxed{5}$$

$$\therefore \sum_{r=1}^{\infty} U_r \text{ is convergent and its sum} = \frac{11}{96}.$$
 (5)

$$\lim_{n \to \infty} \sum_{r=1}^{n} \left(mU_r + U_{n+1-r} \right)$$

$$= \lim_{n \to \infty} \left(m \sum_{r=1}^{n} U_r + \sum_{r=1}^{n} U_{n+1-r} \right)$$

$$= \lim_{n \to \infty} \left(m \sum_{r=1}^{n} U_r + \sum_{r=1}^{n} U_r \right)$$

$$= (m \quad 1) \sum_{r=1}^{\infty} U_r$$

$$\therefore (m+1) \frac{11}{96} = \frac{11}{32} \quad \boxed{5}$$

$$\therefore m+1 = 3 \text{ and } m = 2. \quad \boxed{5}$$

13.(a) Let $a, b \in \mathbb{R}$, $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & a & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & a & b \\ 3 & b & a \end{pmatrix}$. It is given that $2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$. Show that a = 0 and b = 5.

With these values for a and b, let $C = AB^T$.

Find C and write down C^{-1} .

Find the matrix **D** such that $\mathbf{DC} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

(b) Let $z_1, z_2 \in \mathbb{C}$. Show that

(i)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

(ii)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

(iii)
$$z_1\overline{z_1} = |z_1|^2$$

Using the result that $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$ for $z_2 \neq 0$, show that if $|z_1| = 1$ and $z_1 \neq \pm 1$, and also if $\frac{z_1 + z_2}{1 + z_1 z_2}$ is real, then $|z_2| = 1$.

(c) Express $\sqrt{3} + i$ is the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $0 < \theta < \frac{\pi}{2}$.

Using De Moivre's theorem, show that $\frac{\left(\sqrt{3} + i\right)^{24}}{2^{23}(1+i)} = 1$ i.

(a)
$$2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$$
.

$$2\begin{pmatrix} 1 & 2 & -1 \\ 3 & a & 2 \end{pmatrix} + \begin{pmatrix} 0 & a & b \\ 3 & b & a \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$$

$$\Leftrightarrow 4 + a = 4$$
, $-2 + b = 3$ and $2a + b = 5$ (10) for any two.

$$\Leftrightarrow a = 0 \text{ and } b = 5.$$
 (5)

$$\mathbf{C} = \mathbf{A}\mathbf{B}^{\mathsf{T}}$$

$$= \begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 0 & 5 \\ 5 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -5 & 13 \\ 10 & 9 \end{pmatrix} \quad \boxed{10}$$

$$\mathbf{C}^{-1} = -\frac{1}{175} \begin{pmatrix} 9 & -13 \\ -10 & -5 \end{pmatrix}. \quad \boxed{10}$$

$$\mathbf{DC} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\therefore \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{C}^{-1} \qquad \boxed{5}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{bmatrix} 1 & 9 & -13 \\ -10 & -5 \end{bmatrix}$$

$$= \frac{1}{175} \begin{pmatrix} 9 & -13 \\ -20 & -10 \end{pmatrix}. \quad \boxed{10}$$

15

(b) Let
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$ where $x_1, x_2, y_1, y_2 \in \mathbb{R}$.

(i)
$$\overline{z_1 + z_2} = \overline{(x_1 + x_2) + i(y_1 + y_2)}$$

$$= (x_1 + x_2) - i(y_1 + y_2)$$
 (5)

$$=(x_1-iy_1)+(x_2-iy_2)$$

$$=\overline{z_1}$$
 $\overline{z_2}$. $\boxed{5}$

(ii)
$$\overline{z_1 z_2} = \overline{(x_1 + iy_1) + (x_2 + iy_2)}$$

 $= \overline{(x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)}$
 $= (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + y_1 x_2)$ (5)
 $\overline{z_1} \cdot \overline{z_2} = (x_1 - iy_1)(x_2 - iy_2)$
 $= (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + y_1 x_2)$ (5)
 $\therefore \overline{z_1 z_2} = \overline{z_1} \overline{z_2}$. (5)

(iii)
$$z_1 \overline{z}_1 = (x_1 \quad iy_1)(x_1 \quad iy_1)$$

= $x_1^2 \quad y_1^2 + (5)$
= $|z_1|^2$. (5)

10

$$\frac{\overline{z_1 + z_2}}{1 + z_1 z_2} = \frac{z_1 + z_2}{1 + z_1 z_2} \qquad (5)$$

$$\Rightarrow \frac{\overline{z}_1 + \overline{z}_2}{1 + \overline{z}_1 \overline{z}_2} = \frac{z_1 + z_2}{1 + z_1 z_2}$$
 (5)

$$\Rightarrow \quad \overline{z}_1 + \overline{z}_1 z_1 z_2 + \overline{z}_2 + \overline{z}_2 z_1 z_2 = z_1 + z_2 + \overline{z}_1 \overline{z}_2 z_1 + \overline{z}_1 \overline{z}_2 z_2 = 0$$

$$\Rightarrow \quad \overline{z}_1 + \left|\overline{z}_1\right|^2 z_2 + \overline{z}_2 + z_1 \left|\overline{z}_2\right|^2 = z_1 + z_2 + \overline{z}_2 \left|\overline{z}_1\right|^2 + \overline{z}_1 \left|\overline{z}_2\right|^2 = 0$$
 (5)

$$\Rightarrow \quad \overline{z}_{1} + \overline{z}_{2} + \overline{z}_{2} + z_{1} |z_{2}|^{2} = z_{1} + \overline{z}_{2} + \overline{z}_{2} + \overline{z}_{1} |z_{2}|^{2} = 0$$

$$\Rightarrow (z_1 - \overline{z}_1) (|\overline{z}_2|^2 - 1) = 0 \qquad (5)$$

$$\Rightarrow |z_2|^2 - 1 = 0 \quad (: \overline{z_1} \quad z_1) \neq$$

$$\Rightarrow |z_2| = 1. \qquad 5$$

$$(|z_1| = 1 \text{ and } z_1 \qquad 1) \neq \pm$$

(c)
$$\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} i\frac{1}{2}\right) + 5$$

$$= 2\left(\cos\frac{\pi}{6} i\sin\frac{\pi}{6}\right) + 5$$

$$r=2$$
 and $\theta=\frac{\pi}{6}$.

$$\frac{\sqrt{3}+i}{2^{23}(1+i)} = \frac{2^{24}(\cos 4\pi + i\sin 4\pi)}{2^{23}(1+i)} \qquad \boxed{5}$$

$$= \frac{2}{1+i} \quad \frac{1-i}{1-i} \qquad \boxed{5}$$

$$= \frac{2(1-i)}{2}$$

$$= 1-i. \qquad \boxed{5}$$

14. (a) Let $f(x) = \frac{px+q}{(x-1)(x-2)}$ for $x \in \mathbb{R} - \{1, 2\}$, where $p, q \in \mathbb{R}$. It is given that the graph of y = f(x) has a stationary point at (0, 1). Show that p = -3 and q = 2.

For these values of p and q, show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{x(3x-4)}{(x-1)^2(x-2)^2}$ for $x \neq 1, 2$, and find the intervals on which f(x) is decreasing and the intervals on which f(x)is increasing.

Sketch the graph of y = f(x) indicating the asymptotes and the turning points.

Hence, find the number of real solutions to the equation $x^2(x-1)(x-2) = 2 - 3x$.

(b) A cylinder with a top and a bottom is made to have a volume of 1024π cm³. Let r cm be the radius of the cylinder. Show that the total surface area $S \, \mathrm{cm}^2$ of the cylinder is given by $S = 2\pi \left(\frac{1024}{r} + r^2\right)$ for r > 0.

Show that S is minimum when r = 8.

(a) Since f(0) = 1, we have $\frac{q}{2} = 1$. $\therefore q = 2$ (5)

$$f'(x) = \frac{(x-1)(x-2)p - (px+q)(x-1+x-2)}{(x-1)^2(x-2)^2}$$
 (10) for $x \neq 1, 2$.

Since f'(0) = 0, we have 2p - q(-3) = 0.

$$\therefore 2p = -3q$$

$$= -6$$

$$\therefore p = -3$$
(5)

25

$$f'(x) = \frac{-3(x^2 - 3x + 2) - (-3x + 2)(2x - 3)}{(x - 1)^2(x - 2)^2}$$

$$= \frac{-3x^2 + 9x - 6 + 6x^2 - 13x + 6}{(x - 1)^2(x - 2)^2}$$

$$= \frac{3x^2 - 4x}{(x - 1)^2(x - 2)^2}$$

$$= \frac{x(3x - 4)}{(x - 1)^2(x - 2)^2}$$
 5 for $x \neq 1, 2$.
$$f'(x) = 0 \Leftrightarrow x = 0 \text{ or } x = \frac{4}{3}.$$
 (5)

 $f'(x) = 0 \Leftrightarrow x = 0 \text{ or } x = \frac{4}{3}.$

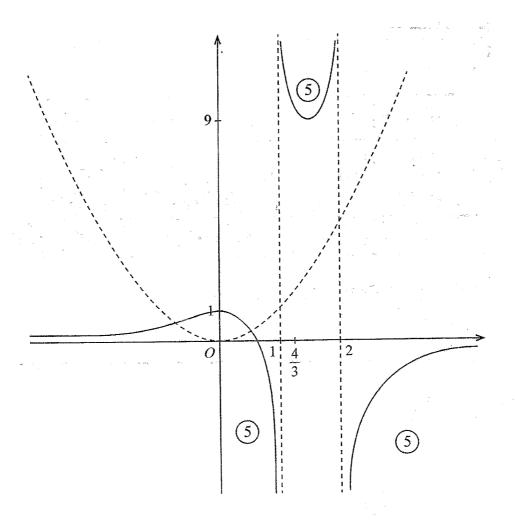
$$0 1 \frac{4}{3} 2$$

,		$-\infty < x < 0$	0 < x < 1	$1 < x < \frac{4}{3}$	$\frac{4}{3} < x < 2$	$2 < x < \infty$	
	Sign of $f'(x) = \frac{x(3x-4)}{(x-1)^2(x-2)^2}$	<u>(-)(-)</u> (+)	<u>(+)(-)</u> (+)	(+)(-) :a	<u>(+)(+)</u> (+)	(+)(+)	
		= (+) (5)	=(-) (5)	= (-) (5)	= (+) (5)	= (+) (5)	
	f(x)	17	7	1	11	1	10)

Increasing on : $(-\infty, 0]$, $[\frac{4}{3}, 2)$ and $(2, \infty)$

Decreasing on : (0, 1] and $[1, \frac{4}{3})$

50


Local maximum at (0, 1) (5

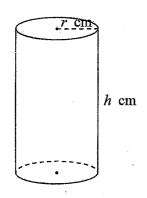
Local minimum at $(\frac{4}{3}, 9)$ (5)

$$\lim_{x \to 1^{-}} f(x) = -\infty \quad , \quad \lim_{x \to 1^{+}} f(x) = \infty$$

$$\lim_{x \to 2^{-}} f(x) = \infty \quad , \quad \lim_{x \to 2^{+}} f(x) = -\infty$$

$$\lim_{x\to\pm\infty} f(x) = 0.$$
 (5)

$$x^2(x-1)(x-2) = 2 - 3x$$


$$x^{2}(x-1)(x-2) = 2 - 3x$$

$$\Leftrightarrow x^{2} = \frac{2 - 3x}{(x-1)(x-2)} \quad \boxed{5}$$

$$\Leftrightarrow x^2 = f(x)$$

 \therefore The number of real solutions = 2. (5)

(b)

$$S = 2\pi rh \quad 2\pi r^2 +$$

$$\pi r^2 h = 1024\pi$$

$$\therefore h = \frac{1024}{r^2} \qquad (5)$$

$$\therefore S = 2\pi r \frac{1024}{r^2} + 2\pi r^2$$

$$=2\pi\left(\frac{1024}{r} \quad r^2\right) \quad \textcircled{5}$$

10

$$\frac{\mathrm{d}S}{\mathrm{d}r} = 2\pi \left(-\frac{1024}{r^2} + 2r \right) \qquad (5)$$

$$\frac{\mathrm{d}S}{\mathrm{d}r} = 0 < (5) \Rightarrow \frac{1024}{r^2} 2r$$

$$\Leftrightarrow r^3 = 512$$

$$\Leftrightarrow r = 8$$
. (5)

$$\frac{\mathrm{d}S}{\mathrm{d}r} < 0 \quad \text{ for } 0 < r < 8.$$

$$\frac{\mathrm{d}S}{\mathrm{d}r} > 0$$
 for $r > 8$.

$$\therefore$$
 S is minimum when $r = 8$. (5)

Deduce that $J = 1 + \frac{3}{4} \ln 3$.

15.(a) Find the values of the real constants A and B such that $3t^2 + 4 = A(t^2 - 2t + 4) + Bt(t + 1)$ for all $t \in \mathbb{R}$.

Hence or otherwise, find $\int \frac{3t^2 + 4}{(t+1)(t^2 - 2t + 4)} dt.$

(b) Using the substitution $u = x + \sqrt{x^2 + 3}$, show that $\int_0^1 \frac{1}{\sqrt{x^2 + 3}} dx = \frac{1}{2} \ln 3.$ Let $J = \int_0^1 \sqrt{x^2 + 3} dx$. Using integration by parts, show that $2J = 2 + \int_0^1 \frac{3}{\sqrt{x^2 + 3}} dx$.

(c) Using the formula $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx, \text{ where } a \text{ is a constant, show that}$ $\int_{0}^{\frac{\pi}{4}} \ln\left(\frac{\cos x}{\cos x + \sin x}\right) dx = \frac{\pi}{8} \ln\left(\frac{1}{2}\right).$

(a) $3t^2 + 4 = A(t^2 - 2t + 4) + Bt(t + 1)$ = $(A + B)t^2 + (-2A + B)t + 4A$ 5

Coefficients of $t^2: 3 = A + B$

Coefficients of $t^1 : 0 = -2A + B$

Coefficients of t^0 : 4 = 4A

 $\therefore A = 1 \text{ and } B = 2.$

$$\begin{array}{cccc}
A & 1 & \text{and} & D & 2 \\
\hline
& & & & & \\
\hline
& & & & & \\
\end{array}$$

where C is an arbitrary constant.

30

(b)
$$u = x + \sqrt{x^2 + 3}$$
.

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 1 \quad \frac{x}{\sqrt{x^2 + 3}} \quad \frac{u}{\sqrt{x^2 + 3}} \tag{5}$$

$$\therefore \frac{1}{\sqrt{x^2 + 3}} dx = \frac{1}{u} du$$

$$x = 0 \implies u = \sqrt{3} \ . \tag{5}$$

So,
$$\int_{0}^{1} \frac{1}{\sqrt{x^2 + 3}} dx = \int_{\sqrt{3}}^{3} \frac{1}{u} du = \ln|u| \Big|_{\sqrt{3}}^{3} = \ln 3 \ln \sqrt{3}$$

$$= \ln \sqrt{3} \quad \frac{1}{2} \ln 3 \div \quad (5)$$

$$J = \int_{0}^{1} \sqrt{x^2 + 3} \, dx = x\sqrt{x^2 + 3} \Big|_{0}^{1} - \int_{0}^{1} \frac{x^2}{\sqrt{x^2 + 3}} \, dx \qquad \boxed{10}$$

$$=2 \int_{0}^{1} \frac{x^2 + 3 - 3}{\sqrt{x^2 + 3}} dx$$
 (5)

$$- : J = 2 \int_{0}^{1} \sqrt{x^{2} + 3} \, dx \int_{0}^{1} \frac{3}{\sqrt{x^{2} + 3}} \, dx \qquad \boxed{10}$$

$$\Rightarrow 2J = 2 \int_{0}^{1} \frac{3}{\sqrt{x^2 + 3}} dx. \qquad \boxed{5}$$

$$J = 1 + \frac{3}{2} \frac{1}{2} \ln 2$$

$$= 1 \frac{3}{4} \ln 2 \quad \boxed{10}$$

10

(c) Let
$$I = \int_{0}^{\frac{\pi}{4}} \ln \left(\frac{\cos x}{\cos x + \sin x} \right) dx$$
.

Then
$$I = \int_{1}^{\frac{\pi}{4}} \ln \left(\frac{\cos\left(\frac{\pi}{4} - x\right)}{\cos\left(\frac{\pi}{4} - x\right) + \sin\left(\frac{\pi}{4} - x\right)} \right) dx$$
 (5)

$$= \int_{-\pi}^{\frac{\pi}{4}} \ln \left(\frac{\cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \sin x}{\cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \cos x - \cos \frac{\pi}{4} \sin x} \right) dx \qquad \boxed{10}$$

$$= \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{\cos x + \sin x}{2\cos x}\right) dx \qquad (5)$$

$$= \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{1}{2}\right) dx \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{\cos x}{\cos x + \sin x}\right) dx \qquad \boxed{10}$$

$$\therefore = I \quad \ln\left(\frac{1}{2}\right) x \Big|_{0}^{\frac{\pi}{4}} \quad I. - \boxed{5}$$

$$\Rightarrow 2I = \ln\left(\frac{1}{2}\right) \frac{\pi}{4}$$

$$\therefore I = \frac{\pi}{8} \ln\left(\frac{1}{2}\right). \quad (5)$$

16. Let $A \equiv (1, 2)$ and $B \equiv (a, b)$, where $a, b \in \mathbb{R}$. It is given that the perpendicular bisector l of the line segment AB has the equation x + y - 4 = 0. Find the values of a and b.

Let $C \equiv (3, 1)$. Show that the point C lies on the line l and find $A\hat{C}B$.

Let S be the circle through the points A, B and C. Show that the centre of S is given by $\left(\frac{13}{6}, \frac{11}{6}\right)$ and find the equation of S.

Hence, find the equation of the circle passing through the points A, B and the point $D \equiv (0, 3)$.

The mid-point of $AB \equiv \left(\frac{1+a}{2}, \frac{2+b}{2}\right)$. (5)

This point lies on l.

$$\therefore \frac{1+a}{2} + \frac{2+b}{2} - 4 = 0$$

Also, *l* is perpendicular to *AB*.

(5)

$$\therefore \left(\frac{b-2}{a-1}\right) \times (-1) = -1. \quad (5)$$

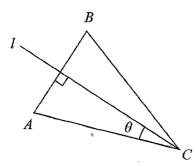
$$\therefore b-2=a-1$$

$$\therefore b-a=1 - 2 \quad \boxed{5}$$

Now, ① and ② give us a = 2 and b = 3.

5) (5

So,
$$A \equiv (1, 2)$$
, $B \equiv (2, 3)$ and $C \equiv (3, 1)$.


35

Substitute x = 3 and y = 1 in x + y - 4 = 0.

L.H.S. =
$$3 + 4 - 1$$

$$= 0 = R.H.S.$$

 \therefore C lies on l. (5)

Let the angle between AC and l be θ .

Then θ is acute.

The slope of $AC = \frac{1}{2}$. (5)

$$\tan \theta = \left| \frac{-\frac{1}{2} - (-1)}{1 + \left(-\frac{1}{2}\right) \times (-1)} \right| = \frac{1}{3}$$
 (10)

$$\theta = \tan^{-1}\left(\frac{1}{3}\right).$$
 5

$$\therefore A\hat{C}B = 2\theta \quad 2\tan^{-1}\left(\frac{1}{3}\right). \quad \boxed{5}$$

35

Let m be the perpendicular bisector of AC.

The slope of m=2. (5)

The mid-point of $AC \equiv \left(2, \frac{3}{2}\right)$.

The equation of $m: y-\frac{3}{2}=2(x+2)$ 5

i.e.
$$y-2x+\frac{5}{2}=0$$
.

The centre of S is the point of intersection of l and m. $\boxed{5}$

Solving x+y-4=0 and $y-2x+\frac{5}{2}=0$ simultaneously, (5) we get 3x=4 $\frac{5}{3}$.

$$\therefore x = \frac{16}{3} \text{ and } y = 4 + \frac{13}{6} + \frac{11}{6}.$$

 \therefore The centre of $S \equiv \left(\frac{13}{6}, \frac{11}{6}\right)$.

The radius of
$$S = \sqrt{\left(\frac{13}{6} - 1\right)^2 + \left(\frac{11}{6} - 2\right)^2}$$
 (10)

$$= \sqrt{\frac{49}{36} + \frac{1}{36}}$$

$$= \sqrt{\frac{25}{18}}$$
 (5)

$$\therefore \text{ The equation of } S: \left(x - \frac{13}{6}\right)^2 + \left(y - \frac{11}{6}\right)^2 = \frac{25}{18}. \qquad \boxed{10}$$
$$x^2 + y^2 - \frac{13}{3}x - \frac{11}{3}y + \frac{20}{3} = 0$$

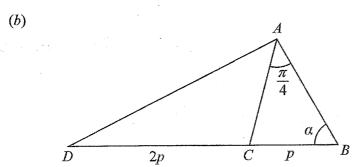
60

$$\therefore \text{ The equation of } AB: y-2=1(x-1)$$
 i.e. $x-y+1=0$

The equation of any circle through A and B is given by $\left(x - \frac{13}{6}\right)^2 + \left(y - \frac{11}{6}\right)^2 - \frac{25}{18} + \lambda(x - y + 1) = 0$, where $\lambda \in \mathbb{R}$.

For this to go through $D \equiv (0, 3)$, we must have $\left(\frac{13}{6}\right)^2 + \left(\frac{7}{6}\right)^2 - \frac{25}{18} + \lambda(-2) = 0$.

$$\lambda = \frac{21}{9} \quad \frac{7}{3} = \quad \boxed{5}$$


$$\therefore$$
 The required equation is $x^2 + y^2 - 2x - 6y + 9 = 0$.

17.(a) Express $6\cos 2x - 8\sin 2x$ in the form $R\cos(2x + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

Hence, solve $6\cos 2x - 8\sin 2x = 5$.

Express $24\cos^2 x - 32\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where $a, b, c \in \mathbb{R}$ are constants to be determined.

Deduce the minimum value of $24\cos^2 x - 32\sin x \cos x$.

In the triangle ABC shown in the figure, BC = p, $B\hat{A}C = \frac{\pi}{4}$ and $A\hat{B}C = \alpha$. The point D lies on the extended line BC such that CQ = 2p.

Show that $AB = p(\cos \alpha + \sin \alpha)$.

Find AD^2 in terms of p and α .

Deduce that if AD = 3p, then $\alpha = \tan^{-1}(5)$.

- (c) Solve the equation $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$.
- (a) $6\cos 2x 8\sin 2x$ $\sqrt{6^2 + 8^2} = 10$

$$=10\left(\frac{6}{10}\cos 2x - \frac{8}{10}\sin 2x\right) \qquad \boxed{5}$$

$$=10\left(\frac{3}{5}\cos 2x - \frac{4}{5}\sin 2x\right)$$

=10($\cos \alpha \cos 2x - \sin \alpha \sin 2x$), where $0 < \alpha < \frac{\pi}{2}$ is such that $\cos \alpha = \frac{3}{5}$ and $\sin \alpha = \frac{4}{5}$. (5)

$$=10\cos(2x \ \alpha).$$
 (5)

$$\therefore_{4} R = 10 \text{ and } \alpha = \tan^{-1} \left(\frac{4}{3}\right).$$
 (5)

 $6\cos 2x - 8\sin 2x = 5$

$$10\cos(2x+\alpha)=5$$

$$\therefore \cos(2x+\alpha) = \frac{1}{2} \cos\frac{\bar{\pi}}{3} \quad \boxed{5}$$

$$2x + \alpha = 2n\pi$$
 $\frac{\pi}{3}$, where $n \in \mathbb{Z}$. $\boxed{5}$

$$\therefore x = n\pi \frac{\alpha}{2} \pm \frac{\pi}{6}, \text{ where } n \in \mathbb{Z}.$$
 (5)

20

 $24\cos^2 x - 32\sin x \cos x$

$$=24\left(\frac{\cos 2x+1}{2}\right)-32\times\frac{1}{2}\sin 2x \qquad \boxed{10}$$

$$= 12\cos 2x - 16\sin 2x + 12$$

$$\therefore a = 12, b = -16 \text{ and } c = 12.$$
 (5)

15

 $24\cos^2 x - 32\sin x \cos x$

$$= 12\cos 2x - 16\sin 2x + 12$$

$$= 2(6\cos 2x - 8\sin 2x) + 12$$

$$= 20\cos(2x + \alpha) + 12 \qquad \boxed{5}$$

$$\min = -1$$

$$\therefore \text{ The required minimum} = -20 + 12$$
$$= -8. \qquad (5)$$

(b) Sine Rule for the $\triangle ABC$:

$$\frac{AB}{\sin\left(\frac{\pi}{4} + \alpha\right)} = \frac{p}{\sin\frac{\pi}{4}} \qquad \boxed{10}$$

$$\therefore AB = \sqrt{2}p \left(\sin\frac{\pi}{4}\cos\alpha + \cos\frac{\pi}{4}\sin\alpha\right) \qquad (5)$$

$$=\sqrt{2}p\left(\frac{1}{\sqrt{2}}\cos\alpha+\frac{1}{\sqrt{2}}\sin\alpha\right)$$

$$= p(\cos\alpha \sin\alpha). \quad \boxed{5}$$

20

Cosine Rule for the $\triangle ABD$:

$$AD^2 = AB^2 + BD^2 - 2AB \cdot BD \cos \alpha \qquad \boxed{5}$$

$$= p^2(\cos\alpha + \sin\alpha)^2 + 9p^2 + 2p(\cos\alpha + \sin\alpha) + 3p\cos\alpha$$
 (5)

Suppose that AD = 3p.

Then
$$9p^2 = p^2(\cos\alpha + \sin\alpha)^2 + 9p^2 + 6p^2(\cos\alpha + \sin\alpha) + \cos\alpha$$
 (5)

$$\therefore (\cos \alpha + \sin \alpha)^2 - 6(\cos \alpha + \sin \alpha)\cos \alpha = 0$$

$$\Rightarrow \cos \alpha + \sin \alpha = 6\cos \alpha$$
 (5)

$$(5) \qquad (0 < \alpha < \frac{\pi}{2})$$

$$\Rightarrow \sin \alpha = 5\cos \alpha$$

$$\Rightarrow$$
 $\tan \alpha = 5$

$$\Rightarrow \alpha = \tan^{-1}(5)$$
. (5)

(c)
$$\sin^{-1}\left(\frac{2}{\sqrt{5}}\right) = \tan^{-1}(2)$$
. (5)

Let $\alpha = \tan^{-1}(x+1)$ and $\beta = \tan^{-1}(x-1)$.

$$\alpha + \beta = \tan^{-1}(2) \quad (5)$$

$$\Rightarrow \tan(\alpha + \beta) = 2 \quad \boxed{5}$$

$$\Rightarrow \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = 2 \qquad \boxed{5}$$

$$\Rightarrow \frac{x+1+x-1}{1-(x^2-1)} = 2 \qquad \boxed{5} \qquad \Rightarrow x = 2-x^2$$
$$\Rightarrow x^2+x-2 = 0$$
$$\Rightarrow (x-1) (x+2) = 0$$

$$x = 1$$
 or $x = -2$. (5)

x = -2 is not a solution. x = 1 is a solution.

$$\therefore x = 1. \quad \boxed{5}$$

Department of Examinations - Sri Lanka

G.C.E. (A/L) Examination - 2024

10 - Combined Mathematics II

Marking Scheme

This has been prepared for the use of marking examiners. Changes would be made according to the views presented at the Chief/Assistant Examiners' meeting.

G. C. E (Advanced Level) Examination – 2024

10 - Combined Mathematics II

Distribution of Marks

Paper I

Part A =
$$10 \times 25$$
 = 250
Part B = 05×150 = 750

Total
$$= \frac{1000}{10}$$

Common Techniques of Marking Answer Scripts.

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

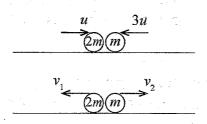
- 1. Use a red color ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve color pen.)
- 2. Note down Examiner's Code Number and initials on the front page of each answer script.
- 3. Write off any numerals written wrong with a clear single line and authenticate the alterations with Examiner's initials.

Example:	Question No. 03		
(i)	***************************************	<i></i>	٨
		V	/4\
	***************************************		<u>5</u>
(ii)	3,		\wedge
• 5		√	<u>/3</u> \
		V	<u>/ 5 \</u>
(iii)			\bigwedge
()		V	$\frac{3}{5}$
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	¥	<u> </u>
	•		
	4 + (ii) <u>3</u> + (iii) <u>3</u>		10
(i)	$\frac{4}{5}$ + (ii) $\frac{3}{5}$ + (iii) $\frac{3}{5}$		15

MCQ answer scripts: (Template)

- 1. Marking templets for G.C.E.(A/L) and GIT examination will be provided by the Department of Examinations itself. Marking examiners bear the responsibility of using correctly prepared and certified templates.
- 2. Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.
- 3. Place the template on the answer script correctly. Mark the right answers with a 'V' and the wrong answers with a 'X' against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage.

Structured essay type and assay type answer scripts:


- 1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.
- 2. Use the right margin of the overland paper to write down the marks.
- 3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.
- 4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

Preparation of Mark Sheets.

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore, add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II Marks in the paper II Column and wright the relevant details.

1. A particle A of mass 2m and a particle B of mass m moving on a smooth horizontal table along the same straight line towards each other with speeds u and 3u respectively, collide directly. After the collision A and B move in opposite directions. The coefficient of restitution between A and B is e. Show that $e > \frac{1}{8}$.

For the system $I = \Delta(mv)$:

$$0 = -2mv_1 + mv_2 - (2mu - 3mu)$$

$$2v_1 - v_2 = u$$
 (1)

Newton's Law of Restitution:

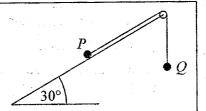
$$v_2 + v_1 = e(u + 3u)$$
 5
 $v_1 + v_2 = 4eu$ ----(2)

(1) and (2)
$$\Rightarrow 3v_1 = u + 4eu$$

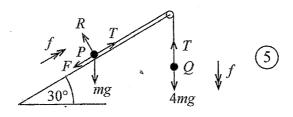
$$\therefore v_1 = \frac{1}{3}(1 + 4e)u > 0 \qquad \boxed{5}$$

$$-3v_2 = u - 8eu$$

$$\therefore v_2 = \frac{1}{3}(8e - 1)u \qquad \boxed{5}$$


For $v_2 > 0$, we must have $e > \frac{1}{8}$. (5)

2. A particle is projected from a point O on a horizontal ground, with an initial speed u at an angle $\theta\left(0<\theta<\frac{\pi}{2}\right)$ to the horizontal. The particle hits a vertical wall which is at a horizontal distance l from O at a height h (>0) from the ground (see the figure).


Show that $h = l \tan \theta$ $\frac{gl^2}{2u^2} \sec^2 \theta$ and **deduce** that $\sin 2\theta > \frac{gl}{u^2}$.

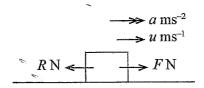
 $S = ut \quad \frac{1}{2} | at^{2} : \Rightarrow l = u \cos \theta t \qquad 5$ $h = u \sin \theta \quad t \quad \frac{1}{2} gt^{2} \qquad 5$ $\therefore h = u \sin \theta \quad \frac{l}{u \cos \theta} \quad \frac{1}{2} g \frac{l^{2}}{u^{2} \cos^{2} \theta}$ $\Rightarrow h = l \tan \theta \quad \frac{gl^{2}}{2u^{2}} \sec^{2} \theta \qquad 5$ $h > 0 \Rightarrow l \tan \theta > \frac{gl^{2}}{2u^{2}} \sec^{2} \theta \qquad 5$ $\Rightarrow \frac{2 \tan \theta}{1 + \tan^{2} \theta} > \frac{gl}{u^{2}}$ $\Rightarrow \frac{2 \sin \theta \cos \theta}{\cos^{2} \theta + \sin^{2} \theta} > \frac{gl}{u^{2}}$ $\Rightarrow \sin 2\theta > \frac{gl}{u^{2}}. \qquad 5$

3. A particle P of mass m lies on a rough inclined plane whose inclination to the horizontal is 30° . Particle P is connected, by a light inextensible string passing over a fixed smooth pulley at the top of the inclined plane, to a particle Q of mass 4m which is free to move vertically (see the figure). The part of the string on the inclined plane lies along a line of greatest slope of the plane.

The coefficient of friction between P and the plane is $\frac{1}{2}$. The system is released from rest with the string taut. It is given that P moves up the inclined plane. Obtain equations sufficient to determine the tension of the string.

F = ma:

$$P \qquad R - mg\cos 30^{\circ} = 0 \qquad \boxed{5}$$

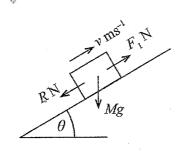

$$\therefore R = \frac{\sqrt{3}}{2} mg$$

$$F = \frac{1}{2}R \quad \frac{\sqrt{3}}{4} mg \quad \boxed{5}$$

$$P \qquad T - F - mg\cos 60^\circ = mf \qquad \boxed{5}$$

$$\therefore T - F - \frac{mg}{2} = mf$$

4. A car of mass M kg travels along a horizontal straight road with its engine working at a constant power of P W. There is a constant resistance of R N to the motion of the car. Find the acceleration of the car at the instant when its speed is u m s⁻¹. Now, the car travels at a constant speed up a straight road that is inclined at an angle $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ to the horizontal. Find this constant speed if the car is subjected to the same resistance R N and have the same power P W.

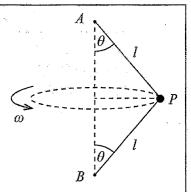

$$P = F \cdot u$$

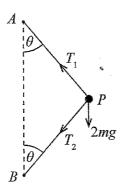
$$\therefore F = \frac{P}{u} \qquad \boxed{5}$$

$$F = ma : \longrightarrow$$

$$F - R = M \cdot a$$
 (5)

$$\therefore a = \frac{1}{M} \left(\frac{P}{u} \quad R \right) \text{ ms}^{-2}. \quad \boxed{5}$$


$$P = F_1 \quad v$$
:


$$\therefore F_1 = \frac{P}{v}$$

$$\frac{P}{v} = R$$
 $Mg \sin \theta$

$$\therefore v = \frac{P}{R + Mg\sin\theta} \text{ ms}^{-1}.$$
 (5)

5. A particle P of mass 2m is connected to two fixed points A and B lying on a vertical line by two light inextensible strings each of length I. The particle P moves in a horizontal circle with a constant angular velocity ω with both strings taut and making an angle θ $\left(0 < \theta < \frac{\pi}{2}\right)$ to the vertical, as shown in the figure. Show that the tension in the string AP is $m(l\omega^2 + g\sec\theta)$.

$$F = ma :$$

$$P \qquad \uparrow \qquad T_1 \cos \theta - T_2 \cos \theta - 2mg = 0 \qquad \boxed{5}$$

$$\therefore T_1 - T_2 = 2mg \sec \theta \quad -----(1) \quad \boxed{5}$$

$$P \qquad T_1 \sin \theta + T_2 \sin \theta = 2ml \sin \theta \, \omega^2 \quad (5)$$

$$T_1 + T_2 = 2ml\omega^2$$
 -----(2)

(1) and (2)
$$\Rightarrow$$
 $2T_1 = 2mg \sec \theta + 2ml\omega^2 +$

$$\therefore T_1 = m(l\omega^2 \quad g \sec \theta). \quad \boxed{5}$$

6. Let \mathbf{u} and \mathbf{v} be two unit vectors such that $\mathbf{u} \cdot \mathbf{v} = \frac{1}{2}$. Also, let $\mathbf{a} = \alpha \mathbf{u} + \mathbf{v}$ and $\mathbf{b} = \mathbf{u} + \beta \mathbf{v}$, where $\alpha, \beta \in \mathbb{R}$. If the vectors \mathbf{a} and \mathbf{b} are perpendicular, and $\mathbf{a} + \mathbf{b}$ is parallel to \mathbf{u} , find the values of α and β .

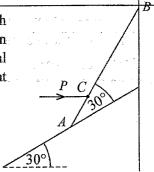
$$\mathbf{a} \cdot \mathbf{b} = (\alpha \mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \beta \mathbf{v})$$

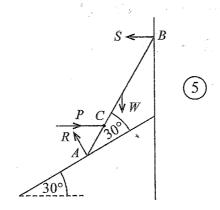
$$0 = \alpha \mathbf{u} \cdot \mathbf{u} + \alpha \beta \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + \beta \mathbf{v} \cdot \mathbf{v}$$

$$0 = \alpha + \alpha \beta \cdot \frac{1}{2} + \frac{1}{2} + \beta - - - - - - (1)$$

$$(2) \cdot \mathbf{u} \implies (\alpha \mathbf{u} + \mathbf{v}) \cdot \mathbf{u} + (\mathbf{u} + \beta \mathbf{v}) \cdot \mathbf{u} = \lambda \mathbf{u} \cdot \mathbf{u}$$

$$(2) \cdot \mathbf{v} \implies (\alpha \mathbf{u} + \mathbf{v}) \cdot \mathbf{v} + (\mathbf{u} + \beta \mathbf{v}) \cdot \mathbf{v} = \lambda \mathbf{u} \cdot \mathbf{v}$$


$$\frac{\alpha}{2} + 1 + \frac{1}{2} + \beta = \frac{\lambda}{2}$$
 — (4)


(3) and (4)
$$\Rightarrow$$
 $\alpha + \frac{3}{2} + \frac{\beta}{2} = \alpha + 3 + 2\beta$

$$\Rightarrow \beta = -1.$$
 (5)

Now,
$$(1) \Rightarrow \alpha = 1$$
. (5)

7. A uniform rod AB of length 4a and weight W is kept in equilibrium with its upper end B against a smooth vertical wall and the lower end A on a smooth plane inclined at 30° to the horizontal by applying a horizontal force P to the rod at the point C, where AC = a. The rod is inclined at 30° to the inclined plane, as shown in the figure. Find the value of P.

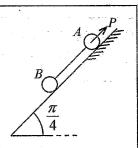
$$P - S - R\sin 30^{\circ} = 0 \qquad \boxed{5}$$

$$\therefore P = S \quad \frac{R}{2}$$

$$R\cos 30^{\circ} - W = 0 \qquad \boxed{5}$$

$$R = \frac{2W}{\sqrt{3}}$$

$$P \times a\sin 60^{\circ} + W \times 2a\cos 60^{\circ} - S \times 4a\sin 60^{\circ} = 0$$
 (5)


$$P \times \frac{\sqrt{3}}{2} + W - \left(P - \frac{R}{2}\right) 2\sqrt{3} = 0$$

$$\sqrt{3}P + 2W - 4\sqrt{3}P + \frac{2W}{\sqrt{3}} \times 2\sqrt{3} = 0$$

$$3\sqrt{3}P = 6W.$$

$$P = \frac{2W}{\sqrt{3}}.$$
 (5)

8. Two particles A and B of masses m and 2m respectively, are placed on a plane inclined at an angle $\frac{\pi}{4}$ to the horizontal and are connected by a light inextensible string and kept in equilibrium by a force P applied to A, as shown in the figure. The line of action of P and the string lie along a line of greatest slope of the plane. The particle A lies on the rough part of the plane and the particle B lies on the smooth part of the plane. The coefficient of friction between A and the plane is $\frac{1}{2}$. Show that $2|\sqrt{2}P-3mg| \leq mg$.

For the system: $P - F - mg \sin \frac{\pi}{4} - 2mg \sin \frac{\pi}{4} = 0$. (5)

$$\therefore F = P \quad 3mg \quad \frac{1}{\sqrt{2}}$$

$$R - mg \cos \frac{\pi}{4} = 0 \qquad \boxed{5}$$

$$\therefore R = \frac{mg}{\sqrt{2}}$$

For the equilibrium:

$$\frac{1}{2} \ge \frac{|F|}{R} \qquad \boxed{5}$$

$$\therefore \quad \left| P - \frac{3mg}{\sqrt{2}} \right| \le \frac{mg}{2\sqrt{2}} \qquad \boxed{5}$$

$$\therefore \quad 2\left| \sqrt{2}P - 3mg \right| \le mg.$$

9. Let A and B be two events of a sample space Ω . It is given that $P(A) = \frac{1}{5}$, $P(A \mid B) = \frac{1}{10}$ and $P(B \mid A) = \frac{3}{10}$. Find P(B) and $P(A \cup B)$.

$$P(B \mid A) = \frac{3}{10}$$

$$\therefore \frac{P(B \cap A)}{P(A)} = \frac{3}{10} \qquad (5)$$

$$\therefore P(B \cap A) = \frac{3}{10} \times \frac{1}{5} = \frac{3}{50} \qquad \boxed{5}$$

$$P(A|B) = \frac{1}{10}$$

$$\therefore \frac{P(A \cap B)}{P(B)} = \frac{1}{10} \quad (5)$$

:.
$$P(B) = 10 \times P(A \cap B) = 10 \times \frac{3}{50} = \frac{3}{5}$$
 (5)

$$P(A \cup B) = P(A)$$
 $P(B)$ $P(A \cap B)$

$$=\frac{1}{5}+\frac{3}{5}-\frac{3}{50}=\frac{37}{50}$$
. (5)

10. The median, the mode and the mean of the following seven observations, arranged in the ascending order, are 5, 7 and 5 respectively:

Here p, q, r and s are real numbers.

Find the values of p, q, r and s, and show that the variance of the seven observations is $\frac{38}{7}$.

Median = 5.

$$\therefore p = 5. \quad \boxed{5}$$

Mode = 7.

 \therefore At least two of q, r, s must be $7^{\circ s}$. (5)

Let us take 2 of them to be 7^{18} and the other one be a.

Mean = 5

$$\therefore 5 = \frac{1+3+4+5+7+7+a}{7} \qquad \boxed{5}$$

$$35 = 27 + a$$

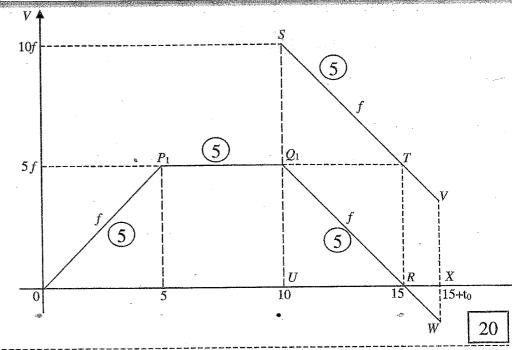
$$\therefore a = 8.$$

So,
$$q = r = 7$$
 and $s = 8$. (5)

Variance =
$$\frac{1}{7} \left[(1-5)^2 + (3-5)^2 + (4-5)^2 + (5-5)^2 + 2(7-5)^2 + (8-5)^2 \right]$$

$$= \frac{1}{7} [16+4+1+8+9] = \frac{38}{7}.$$
 (5)

A PARTY AND LONG A PARTY AND A


11. (a) A car P that begins its journey from rest on a straight road from a point O at time t = 0 s, moves with a constant acceleration of f m s⁻² for 5 seconds. It then moves with the constant speed attained at t = 5 s for another 5 seconds and at t = 10 s decelerates at a constant deceleration of f m s⁻² and comes to rest at a point A. The car P then changes its direction instantly and returns towards O with the same constant acceleration of f m s⁻² on the same road.

Another car Q that begins its journey with an initial speed of $10f \,\mathrm{m \, s^{-1}}$ from the point O at $t=10 \,\mathrm{s}$, moves towards car P with a constant deceleration of $f \,\mathrm{m \, s^{-2}}$ along the same road. It is given that the distance between P and Q when P comes to test at A, is 125 m. Sketch velocity-time graphs for the motions of P and Q from $t=0 \,\mathrm{s}$ until they meet, in the same diagram. Show that

(i) f = 10,

(5)

(ii) cars P and Q meet at t = 17.5 s.

The time taken by P to reach A = 15 s

(5)

The distance travelled by Q from t = 10s to t = 15s

= The area of
$$STRU = \frac{1}{2}(SU + TR) \times UR$$

$$= \frac{1}{2}(10f + 5f) \times 5$$

$$= \frac{75}{2}f \quad \text{m}$$
Stance from Q to $A = \text{Area of } QRQR$

The distance from O to A = Area of OP_1Q_1R \bigcirc $= \frac{1}{2} \times (5+15) \times 5f = 50f \text{ m} \bigcirc$

Given:
$$125 = 50f - \frac{75}{2}f$$
 5

 $\therefore f = 10$

Suppose that P and Q meet at $t = (15 + t_0)s$.

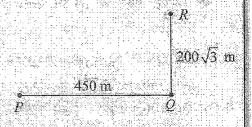
They meet when Area RTVX + Area RWX = 125. (5)

i.e. when Area RTVW = 125.

$$TR \times RX = 125$$

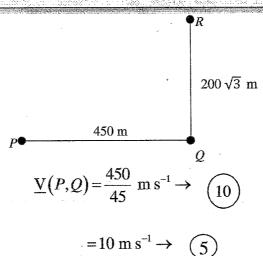
$$5f \times t_0 = 125$$

$$50 \times t_0 = 125$$


$$\therefore t_0 = \frac{125}{50} = 2.5s$$

$$\therefore P \text{ and } Q \text{ meet at } t = (15 + 2.5) s$$

=17.5s. (5


25

(b) Three boats P, Q and R are moving in straight-line paths with uniform speeds. At a certain instant, the boat Q is located 450 m east of the boat P and the boat R is located $200\sqrt{3}$ metres north of the boat Q (See the figure). The boat P sails with the intention of meeting the boat Q and the boat Q sails with the intention of meeting the boat R

It is given that the boat P meets the boat Q in 45 seconds and the boat Q meets the boat R in 20 seconds.

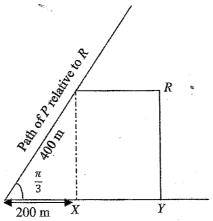
Show that the speed of the boat P relative to the boat Q is 10 m s^{-1} , and find the distance between the boat P and the boat R at the instant when the boat Q meets the boat R.

 \therefore The speed of P relative to $Q = 10 \text{ m s}^{-1}$. \bigcirc

$$\underline{V}(Q,R) = \frac{200\sqrt{3}}{20} \,\text{m s}^{-1} \quad \boxed{10}$$

$$= 10\sqrt{3} \,\text{m s}^{-1} \quad \boxed{5}$$

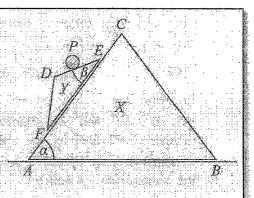
$$\underline{\mathbf{V}}(P,R) = \underline{\mathbf{V}}(P,Q) + \underline{\mathbf{V}}(Q,R)$$


$$w = \sqrt{\left(10\sqrt{3}\right)^2 + 10^2}$$
= 20 ms⁻¹ 5

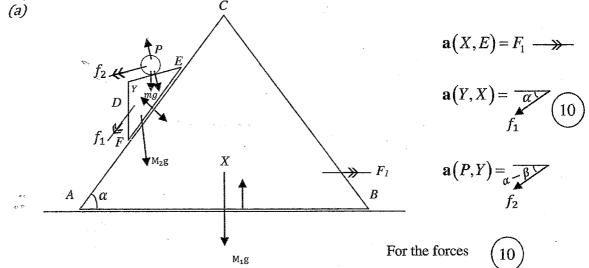
$$\tan\theta = \frac{10\sqrt{3}}{10} = \sqrt{3}$$

$$\theta = \frac{\pi}{3}$$

After 20 s:



The requied distance = XY


$$= (450 - 200)$$
 m

$$= 250 \text{ m}.$$

12.(a) The vertical cross-section through the centres of mass of two smooth uniform wedges X, Y and a particle P is shown in the figure, AC, DE and EF are lines of greatest slope of the faces containing them with $B\widehat{A}C = \alpha$ and $D\widehat{E}F = \beta$ (< α). The face containing AB of the wedge X of mass M_1 is placed on a smooth horizontal table. The face containing EF of the wedge Y of mass M, is placed on the face of X containing AC. The particle P of mass m is placed on DE. The system is released from rest. Write down equations sufficient to determine the acceleration of the wedge X, while the wedge Y moves with its face

of the wedge X, while the wedge Y moves with its face containing EF touching the face of the wedge X containing AC and the particle P moves touching DE.

Apply $\mathbf{F} = \mathbf{ma}$:

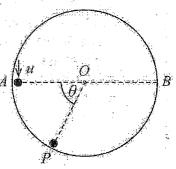
For the system \rightarrow :

$$O = M_1 F_1 + M_2 (F_1 - f_1 \cos \alpha) + m (F_1 - f_1 \cos \alpha - f_2 \cos (\alpha - \beta)).$$
 (10)

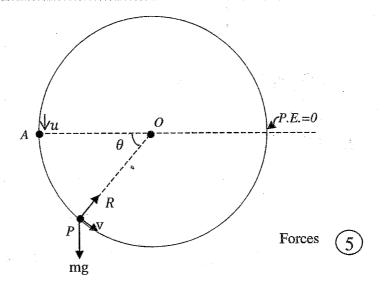
For Y and $P = \overline{\alpha}$:

$$(M_2 + m)g \sin \alpha = M_2 (f_1 - F_1 \cos \alpha) + m(f_1 + f_2 \cos \beta - F_1 \cos \alpha).$$
 (10)

For $P = \alpha - \beta$


$$mg\sin(\alpha-\beta) = m(f_2 - f_1\cos\alpha - F_1\cos(\alpha-\beta)). \quad (10)$$

(b) The vertical cross-section perpendicular to the horizontal axis of a fixed hollow right-circular cylinder of radius a with a smooth inner surface is shown in the adjoining figure.


The point O is its centre, and A and B are the ends of its horizontal diameter. A particle P of mass m is projected in the vertically downward direction from A on the inner surface of the cylinder with speed w. Let v be the speed of P when OP has turned through an angle θ with P is in contact with the cylinder.

Show that $v^2 = u^2 + 2ga\sin \theta$.

It is given that P leaves the inner surface of the cylinder when $\theta = \frac{7\pi}{6}$. Show that u

 $=\frac{7\pi}{6}$. Show that $u=\sqrt{\frac{3ga}{2}}$

Consevation of energy:

$$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 - mga\sin\theta$$

$$\therefore v^2 = u^2 + 2ga\sin\theta \qquad \boxed{5}$$

P.E. (5)

K.E. (5)

Equation (5)

$$\widehat{m} \xrightarrow{\theta} \mathbf{F} = \mathbf{ma}$$
:

$$R - mg\sin\theta = m\frac{v^2}{a} \qquad \boxed{10}$$

$$\therefore R = \frac{m}{a} (u^2 + 2ga \sin \theta) + mg \sin \theta \quad \boxed{5}$$

$$R=0$$
 when $\theta = \frac{7\pi}{6}$. (5)

$$\therefore 0 = \frac{m}{a} \left(u^2 + 2ga \sin \frac{7\pi}{6} \right) + mg \sin \frac{7\pi}{6}$$
 (5)

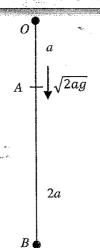
$$\therefore \quad 0 = u^2 + 2ga\left(-\frac{1}{2}\right) + ga\left(-\frac{1}{2}\right) \quad \boxed{5}$$

$$\therefore u^2 = \frac{3ga}{2}$$

$$\therefore u = \sqrt{\frac{3ga}{2}} . \quad \boxed{5}$$

13. One end of a light elastic string of natural length a is attached to a fixed point O and the other end to a particle P of mass m, and P has been set to vertical motion. When it is moving vertically downward, it passes through the point A below O_a where OA = a, its speed is $\sqrt{2ag}$. The particle comes to instantaneous rest at point B, 3a below O. Show that the modulus of elasticity of the string is $\frac{3}{5}mg$.

Also, show that the equation of motion of P is given by $\ddot{x} + \omega^2 \left(x - \frac{5\alpha}{3}\right) = 0$, where OP = x for x > a and ω (>0) is a constant to be determined.


Re-write the above equation of motion by taking $X = x - \frac{5n}{3}$

Find the centre, amplitude and the period of this simple harmonic motion of the particle.

Using the formula $X^2 = \omega^2(C^2 - X^2)$, where C is the amplitude, find the maximum speed of P. On its way up, show that P barely reaches Q.

Show that the total time taken by P to move from B to O is $\sqrt{\frac{2a}{27g}}(2\pi+3\sqrt{3})$.

If the above simple harmonic motion is initiated by pulling P down and releasing, state how far the string must be pulled from its natural length.

Let λ be the module of elasticity.

We shall apply the Principled of conservation of Energy:

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\frac{1}{2}m \times 2ga + mg \times 2a = \frac{1}{2}\frac{\lambda(2a)^2}{3}$$

$$\therefore \quad \lambda = \frac{3}{2} mg.$$
 5

A T V Mg

F = ma:

$$mg - T = m\ddot{x}$$

$$mg - \frac{3}{2}mg\frac{(x-a)}{a} = m\ddot{x}$$

$$\ddot{x} = g - \frac{3}{2}g\frac{x}{a} + \frac{3g}{2}$$

$$\ddot{x} + \frac{3g}{2a}x - \frac{5}{2}g = 0$$

$$\ddot{x} + \frac{3g}{2a} \left(x - \frac{5a}{3} \right) = 0 \quad \boxed{5}$$

$$\ddot{x} + \omega^2 \left(x - \frac{5a}{3} \right) = 0, ----(1)$$

where
$$\omega = \sqrt{\frac{3g}{2a}}$$
. (5)

20

Let
$$X = x - \frac{5a}{3}$$
.
Then $\dot{X} = \dot{x}$ and $\ddot{x} = \ddot{x}$. 5

Now (1) becomes $\ddot{X} + \omega^2 x = 0$. (5)

10

At the centre $\ddot{X} = 0$.

$$X=0.$$
 $\boxed{5}$

$$\therefore x = \frac{5a}{3}.$$
 (5)

$$\dot{x} = 0$$
 when $x = 3a$.

∴ The amplitude =
$$3a - \frac{5a}{3} = \frac{4a}{3}$$
. (5)

The Period =
$$\frac{2\pi}{\omega}$$
 = $2\pi\sqrt{\frac{2a}{3g}}$. $\boxed{5}$

20

$$\dot{X}^2 = \omega^2 \left(C^2 - X^2 \right)$$

The maximum speed occurs when X = 0.

$$\max \dot{X}^2 = \omega^2 c^2$$

$$\widehat{\mathbf{5}}$$

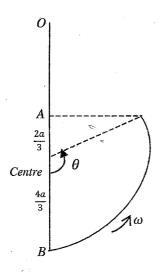
$$\therefore \max \dot{x}^2 = \frac{3g}{2a} \cdot \left(\frac{4a}{3}\right)^2$$

$$= \frac{3g}{2a} \cdot \frac{16a^2}{9} = \frac{8}{3}ag$$
 5

$$\therefore \text{ The maximum speed} = \sqrt{\frac{8ag}{3}}. \qquad \boxed{5}$$

For the motion under gravity from A to O,

$$v^2 = u^2 + 2as$$
:


$$v^2 = 2ag - 2ga$$

$$=0$$
 \bigcirc

$$\therefore v = 0$$

$$\therefore$$
 P barely reaches O. $($

10

The time from B to $A = T_{1}$

Then
$$T_1 = \frac{\theta}{\omega}$$
 5

$$\theta = \pi - \cos^{-1}\left(\frac{1}{2}\right)$$

$$=\pi-\frac{\pi}{3}$$

$$=\frac{2\pi}{3}$$
 (5)

$$\therefore T_{\rm i} = \sqrt{\frac{2a}{3g}} \cdot \frac{2\pi}{3} \quad \boxed{5}$$

The time from A to $O = T_2$.

$$v = u + at$$
:

$$0 = \sqrt{2ag} - gT_2. \quad \boxed{5}$$

$$T_2 = \sqrt{\frac{2a}{g}} \qquad \boxed{5}$$

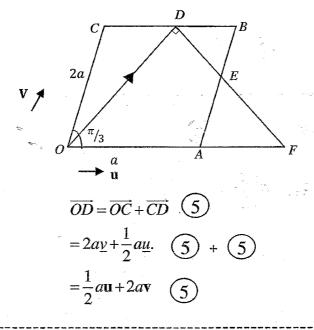
 \therefore The total time from B to $O = T_1 + T_2$

$$=\sqrt{\frac{2a}{3g}}\cdot\frac{2\pi}{3}+\sqrt{\frac{2a}{g}}$$

$$=\sqrt{\frac{2a}{27g}}\left(2\pi+3\sqrt{3}\right).$$
 (5)

40

P must be pulled a distance 2a from its natured length.


14.(a) Let OABC be a parallelogram with OA = a, OC = 2a and $A\hat{O}C = \frac{\pi}{3}$. Also, let u and v be the unit vectors in the directions of \overrightarrow{OA} and \overrightarrow{OC} respectively.

Show that $\overrightarrow{OD} = \frac{1}{3}a\mathbf{u} + 2a\mathbf{v}$, where D is the mid-point of BC.

Let E be the point on AB such that OD is perpendicular to DB.

Show that $\overrightarrow{DE} = \frac{a}{2}\mathbf{u} - \frac{a}{3}\mathbf{v}$.

Let F be the point of intersection of the extended lines \overrightarrow{OA} and \overrightarrow{DE} . Show that $\overrightarrow{OF} = \frac{7a}{2}\mathbf{u}$.

$$\overrightarrow{DE} = \overrightarrow{DO} + \overrightarrow{OA} + \overrightarrow{AE}$$

$$= -\frac{1}{2}a\mathbf{u} - 2a\mathbf{v} + a\mathbf{u} + \lambda \mathbf{v} = \frac{1}{2}a\mathbf{u} + (\lambda - 2a)\mathbf{v} \quad \boxed{10}$$

$$\overrightarrow{OD} \perp \overrightarrow{DE} \Rightarrow \overrightarrow{OD} \cdot \overrightarrow{DE} = 0 \quad \boxed{5}$$

$$\left(\frac{1}{2}a\mathbf{u} + 2a\mathbf{v}\right) \cdot \left(\frac{1}{2}a\mathbf{u} + (\lambda - 2a)\mathbf{v}\right) = 0 \quad \boxed{5}$$

$$\frac{1}{4}a^2\mathbf{u} \cdot \mathbf{u} + \frac{1}{2}a(\lambda - 2a)\mathbf{u} \cdot \mathbf{v} + a^2\mathbf{v} \cdot \mathbf{u} + 2a(\lambda - 2a)\mathbf{v} \cdot \mathbf{v} = 0$$

$$= \frac{1}{2} \qquad = \frac{1}{2} \qquad = 1$$

$$\frac{1}{4}a + \frac{1}{4}(\lambda - 2a) + \frac{1}{2}a + 2(\lambda - 2a) = 0 \quad \boxed{5}$$

$$\frac{9\lambda}{4} = 4a - \frac{3}{4}a + \frac{2a}{4}$$

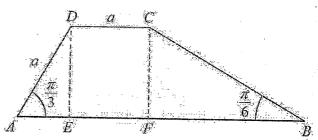
$$\frac{9\lambda}{4} = 4a - \frac{a}{4}$$

$$\lambda = \frac{15}{9}a = \frac{5}{3}a.$$
 (5)

$$\therefore \overrightarrow{DE} = \frac{1}{2}a\mathbf{u} + \left(\frac{5a}{3} - 2a\right)\mathbf{v}$$

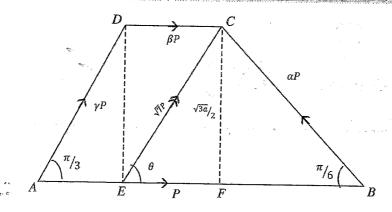
$$=\frac{a}{2}\mathbf{u}-\frac{a}{3}\mathbf{v}$$
 (5)

$$\overrightarrow{OF} = \overrightarrow{OD} + \overrightarrow{DF}$$


$$(5) \mu \mathbf{u} = \frac{1}{2}a\mathbf{u} + 2a\mathbf{v} + \beta \left(\frac{a}{2}\mathbf{u} - \frac{a}{3}\mathbf{v}\right) (5)$$

$$\mu = \frac{1}{2}a + \beta \frac{a}{2}$$
 and $0 = 2a - \frac{\beta a}{3}$ (5) + (5)

$$\therefore \beta = 6$$
 and $\mu = \frac{7a}{2}$


$$\vec{OF} = \frac{7a}{2} \mathbf{u} \cdot (5)$$

(b) Let ABCD be a trapezium with AB parallel to DC, $ABC = \frac{\pi}{6}$, $BAD = \frac{\pi}{3}$ and AD = DC = a. The points E and F are on AB such that $A\widehat{E}D = A\widehat{F}C = \frac{\pi}{2}$ (See the figure). Forces of magnitude \widehat{P} , αP , βP and γP act along AB, BC, DC and AD respectively, in the directions includes \widehat{P} .

directions indicated by the order of the letters. It is given that the resultant force of these is of magnitude $\sqrt{7}P$, and it passes through the points E and G in the sense from E to G. Find the values of α , β and γ .

Now, a couple is added to the system such that the line of action of the resultant of the new system passes through the point F. Find the moment of the couple added.

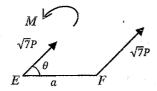
$$C \left(\frac{\gamma P}{2} + P\right) \frac{\sqrt{3}a}{2} - \frac{\gamma P \sqrt{3}}{2} \left(\frac{a}{2} + a\right) = 0 \quad \boxed{10}$$

$$\frac{\gamma}{2} + 1 - \frac{3\gamma}{2} = 0$$

$$r=1.$$
 (5)

$$\gamma P \frac{\sqrt{3}}{2} + \alpha P \frac{1}{2} = \sqrt{7}P \cdot \frac{\sqrt{3}}{\sqrt{7}} \quad \boxed{10}$$

$$\frac{\sqrt{3}}{2} + \frac{\alpha}{2} = \sqrt{3}$$



$$\alpha = \sqrt{3}$$
. (5)

$$\longrightarrow P + \beta P + P \times \frac{1}{2} - \sqrt{3}P \cdot \frac{\sqrt{3}}{2} = \sqrt{7}P \cdot \frac{2}{\sqrt{7}} \quad (10)$$

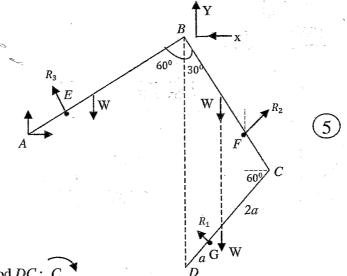
$$\beta = 2$$
. (5)

45

$$\int_{F} \sqrt{7} Pa \sin \theta - M = 0 \quad \boxed{5}$$

$$M = \sqrt{7}Pa \cdot \frac{\sqrt{3}}{\sqrt{7}}$$

$$=\sqrt{3}Pa$$
 (5)


Moment of the couple =
$$\sqrt{3}Pa$$
 5

15. (a) Three uniform rods AB, BC and CD of equal length 4a and equal weight W are smoothly jointed at the end points B and C. The end A is smoothly hinged to a fixed point. The three rods are kept in equilibrium in a vertical plane by placing the rods on three smooth pegs E, F and G such that AE = CF = DG = a, $ABD = 60^\circ$, $CBD = 30^\circ$, and BD is vertical as shown in the figure.

Show that

- (i) the magnitude of the reaction exerted on the rod CD by the peg G is $\frac{W}{3}$ and
- (ii) the magnitude of the reaction exerted on the rod BC by the peg F is $\frac{1.1W}{10}$.

Also, find the reaction exerted on the rod BC by the rod AB at the joint B.

(i) For the rod DC: C

$$R_{i} \times 3a - W \times 2a \cos 60^{0} = \vec{0} \quad (5)$$

$$_{0}R_{1}=\frac{W}{3}.$$

15

(ii) For BCD: B

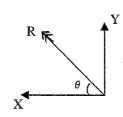
$$R_2 \times 3a - 2 \times W \times 2a \sin 30^{0}$$
$$-R_1 \cos 30^{0} \times 7a \cos 30^{0} + R_1 \sin 30^{0} \times a \sin 30^{0} = 0$$

$$3R_2 = 2W + \frac{W}{3} \times 7 \times \frac{3}{4} - \frac{W}{3} \times \frac{1}{4}$$
$$= 2W + \frac{20W}{12}$$

$$\therefore R_2 = \frac{11W}{9}. \quad \boxed{5}$$

For
$$BCD$$
:

$$R_2 \cos 30^0 - R_1 \cos 30^0 - X = 0 \qquad \boxed{5}$$

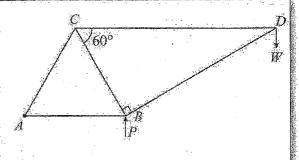

$$\therefore X = \frac{11W}{9} \frac{\sqrt{3}}{2} - \frac{W}{3} \frac{\sqrt{3}}{2} = \frac{8\sqrt{3}W}{18} = \frac{4\sqrt{3}}{9}W \quad \boxed{5}$$

$$Y - 2W + R_1 \sin 30^0 + R_2 \sin 30^0 = 0 \qquad \boxed{5}$$

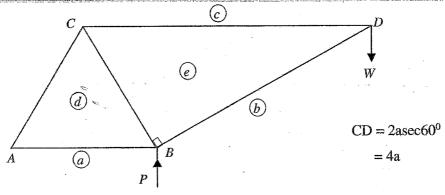
$$\therefore Y = 2W - \frac{W}{3} \times \frac{1}{2} - \frac{11W}{9} \times \frac{1}{2}$$

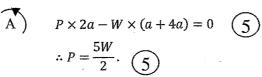
$$= 2W - \frac{14W}{18}$$

$$= \frac{11W}{9}.$$
 5

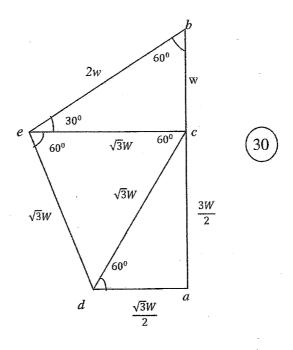


$$R = \sqrt{\frac{48}{81} + \frac{121}{81}}$$
 $W = \sqrt{\frac{169}{81}}$ $W = \frac{13}{9}W$. (5)


$$\tan \theta = \frac{Y}{X} = \frac{\frac{11W}{9}}{\frac{4\sqrt{3}W}{9}} = \frac{11}{4\sqrt{3}}$$


$$\theta = \tan^{-1} \left(\frac{11}{4\sqrt{3}} \right). \quad \boxed{5}$$

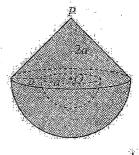
(b) The framework shown in the figure consists of five light rods AB, BC, CA, CD and DB that are smoothly jointed at their ends. It is given that AB=BC=CA=2a, CBD=90° and BCD=60°. A load W is suspended at the joint D and the framework is smoothly hinged to a fixed point at A and kept in equilibrium in a vertical plane with AB horizontal, by a force P applied vertically upwards to it at the joint B.

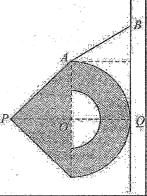


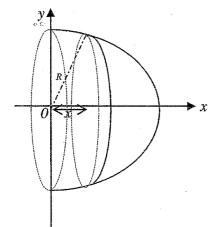
- (i) Find the value of P.
- (ii) Draw a stress diagram using Bow's notation for the joints D, C and B. Hence, find the stresses in the rods, staffing whether they are tensions or thrusts.

10

Rod	Magnitude	Tension /Thrust
AB	$\frac{\sqrt{3}W}{2}$	Thrust
BD	2W	Thrust
DC	√3W	Tension
CA	√3W	Tension
BC	√3W	Thrust

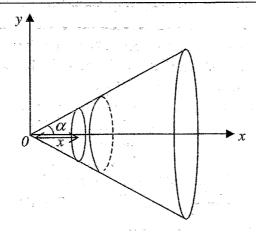

(50)


16. Show that the centre of mass of a uniform solid hemisphere of radius a is at a distance $\frac{3}{8}$ from its centre and the centre of mass of a uniform solid right-circular cone of height h is at distance $\frac{1}{4}h$ from the centre of its base.


A hemispherical portion of radius a and centre O is carved out from a uniform solid hemisphere of radius 2a, centre O and density ρ . Now, a uniform solid right circular cone of base radius 2a and height 2a with density $\lambda \rho$ is rigidly fixed to the remaining portion of the hemisphere, as shown in the adjoining figure. Show that the centre of mass of the body S thus formed, lies at a distance $\frac{(48\lambda+157)}{8(4\lambda+7)}a$ from P, where P is the vertex of the solid cone of S:

Find the value of λ such that the centre of mass of S_i lies at O. Now, suppose that λ has this value.

Let Q be the point at which the extended line PQ meets the outer hemispherical surface of S. Also, let A be a point of the circular edge of S. The body S is kept in equilibrium against a rough vertical wall by means of a light inextensible string with one end attached to the point A and other end to a fixed point B on the vertical wall. In the equilibrium position, the outer hemispherical surface of S touches the wall at the point Q. The points O, A, B, P and Q lie on a vertical plane perpendicular to the wall (see the adjoining figure). Show that $\mu \ge 1$, where μ is the coefficient of friction between the outer hemispherical surface of S and the wall.


By Symmetry the centre of mass G line on the x - axis. 5Let $OG = \overline{x}$.

$$\overline{x} = \frac{\int_{0}^{a} \pi \left(a^{2} - x^{2}\right) \rho x dx}{\int_{0}^{a} \pi \left(a^{2} - x^{2}\right) \rho dx} \quad \boxed{5} + \boxed{5}$$

$$=\frac{\left(\frac{a^2x^2}{2} - \frac{x^4}{4}\right)\Big|_0^a}{\left(a^2x - \frac{x^3}{3}\right)\Big|_0^a} \qquad \boxed{5} + \boxed{5}$$

$$=\frac{\frac{a^4}{2} - \frac{a^4}{4}}{a^3 - \frac{a^3}{3}}$$

$$=\frac{3a}{8}$$

By symmetry the centre of main G line on the x - axis. (5)

Let $OG = \overline{x}$

$$\overline{x} = \frac{\int_0^h \pi x^2 \tan^2 \alpha \cdot \rho x dx}{\int_0^h \pi x^2 \tan^2 \alpha \cdot \rho dx} \qquad \boxed{5} + \boxed{5}$$

$$= \frac{\frac{x^4}{4} \Big|_{0}^{h}}{\frac{x^3}{3} \Big|_{0}^{h}} \qquad \boxed{5}$$

$$=\frac{\frac{h^4}{4}}{\frac{h^3}{3}} = \frac{3h}{4}.$$
 5

 \therefore The distance to G from the centre of the base

$$=h-\frac{3h}{4}$$

$$=\frac{h}{4}.$$

By symmetry the centre of main lies on the line joining O and P. (5)

Object	Mass	Distance to the C.M. from P
	$\frac{1}{3}\pi(2a)^2 2a\lambda\rho$ $=\frac{8}{3}\pi a^3\lambda\rho = 4\lambda m$	$\frac{3}{4}(2a) = \frac{3a}{2}$
2a	e e e e e e e e e e e e e e e e e e e	
	$\frac{2}{3}\pi (2a)^3 \rho$ $= \frac{16}{3}\pi a^3 \rho = 8m$	$2a+\frac{3}{8}(2a)$
	$=\frac{16}{3}\pi a^3 \rho = 8m$	$=\frac{11a}{4}$
Ö.	$\frac{2}{3}\pi a^3 \rho = m$	$2a + \frac{3a}{8}$ $= \frac{19}{8}a$
S	$(4\lambda+7)m$	\overline{x}

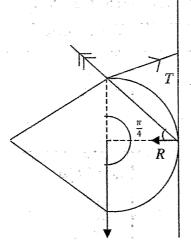
35

Where
$$m = \frac{2}{3}\pi a^3 \rho$$
.

$$4\lambda m \times \frac{3a}{2} + 8m \times \frac{11a}{4} - m \times \frac{19a}{8} = (4\lambda + 7)m \times \overline{x}$$
 (10)

$$6\lambda a + 22a - \frac{19}{8}a = (4\lambda + 7)\overline{x}$$

$$\therefore \overline{x} = \frac{\left(48\lambda + 157\right)}{8\left(4\lambda + 7\right)}a.$$
 5


55

$$\overline{x} = 2a$$
. $\boxed{5}$

$$48\lambda + 157 \over 8(4\lambda + 7) a = 2a \quad \boxed{5}$$

$$\therefore 48\lambda + 157 = 64\lambda + 112$$

$$\therefore \lambda = \frac{45}{16}.$$

$$\frac{F}{R} = \tan\frac{\pi}{4} = 1$$
 (15)

$$\mu \ge \frac{F}{R} \Rightarrow \mu \ge 1.$$
 (5)

17. (a) A box B_1 contains 2 white balls and 3 black balls which are identical in all aspects except for their colours. 3 balls are transferred at random from box B_1 into an empty box B_2 . Then a ball is drawn at random from box B_3 .

Find the probability that

- (i) the ball drawn from box B_2 is white,
- (ii) 2 white balls and 1 black ball are transferred from box B_4 into box B_2 , given that the drawn ball from box B_2 is white,

Let E_i be the event that i balls out of the 3 balls drawn from B_1 are black; i = 1, 2, 3.

Then,
$$P(E_1) = \frac{{}^3C_1{}^2C_2}{{}^5C_3} = \frac{3}{10}$$
, (10)

$$P(E_2) = \frac{{}^3C_2{}^2C_1}{{}^5C_3} = \frac{6}{10},$$
 (10)

$$P(E_3) = \frac{{}^3C_3}{{}^5C_3} = \frac{1}{10} .$$
 (10)

$$E_{1} \stackrel{\frac{2}{3}}{\stackrel{1}{3}} \stackrel{W}{B} P(W|E_{1}) = \frac{2}{3}$$

$$E_{2} \stackrel{\frac{1}{3}}{\stackrel{2}{3}} \stackrel{W}{B} P(W|E_{2}) = \frac{1}{3}$$

$$E_{3} \stackrel{0}{\stackrel{W}{\longrightarrow}} P(W|E_{3}) = 0$$

$$1 \stackrel{B}{\longrightarrow} P(W|E_{3}) = 0$$

Total Prabability Law:

$$P(W) = P(W|E_1)P(E_1) + P(W|E_2)P(E_2) + P(W|E_3)P(E_3)$$

$$= \frac{2}{3} \times \frac{3}{10} + \frac{1}{3} \times \frac{6}{10} + 0 \times \frac{1}{10}$$
 10

$$=\frac{2}{5}$$
. 5

Baye's Theorem:

$$P(E_1|W) = \frac{P(W|E_1).P(E_1)}{P(W)}$$

$$= \frac{\frac{2}{3} \times \frac{3}{10}}{\frac{2}{5}}$$

$$= \frac{1}{2}$$

$$(5)$$

(b) The times taken to solve a puzzle by 20 students were coded by subtracting 10 from each of the times and then dividing by 2.

The frequency distribution of the coded data with 2 missing frequencies is given below:

- 3	· ·	50 V	 315	Na		2.25		12.		* :	9195	 tide tide i Mai Mari tidan tidak i Mala Jawa Historia Alaha Atalik ibi Atali	
			 	Y	100	t nı	لاموالية					frequency	
		1		(-	- 2				7. 5. j		2	
Application of the last			W.	2		- 4				: 1		4	
			3	4	-	- (3		111			k	
				(,	- 8)	48 48				f_{2}	
0.000				8		1	0			i i		1	

Estimated mean for the coded times is given to be 4.4 minutes. Show that $f_1 = 6$ and $f_2 = 2$. Estimate the standard deviation and the mode of the coded times.

Now, estimate the mean, the standard deviation and the mode of the actual times taken to solve the puzzle.

(b)

Ta.				
Coded time	f_i	x_i	$f_i x_i$	$\int f_i x_i^2$
(in minutes)				
0 - 2	2	1	2	2
2 - 4	f_1	3	$ 3f_1 $	$9f_1 = 54$
4 - 6	9	5	45	225
6 - 8	f_2	7	7f2	$49f_2 = 98$
8 - 10	1	9	9	81
			$56+3f_1+7f_2$	460

$$12 + f_1 + f_2 = 20$$

$$\therefore f_1 + f_2 = 8$$
 (1)

$$\frac{\sum_{i=1}^{5} f_i x_i}{\sum_{i=1}^{5} f_2} = \frac{56 + 3f_1 + 7f_2}{20} = 4.4 \quad \boxed{10}$$

$$\therefore 3f_1 + 7f_2 = 32 - (2)$$

$$(1),(2) \Rightarrow f_1 = 6$$
 and $f_2 = 2$

Standard deviation =
$$\sqrt{\frac{460}{20} - (4.4)^2}$$
 $(10) + (5)$ for 460

$$10$$
 + 5

$$=\sqrt{3.64}$$
 (5)

≈1.91

Model Class: 4-6

$$Mode = L + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)c$$

$$=4 \pm \left(\frac{9-6}{(9-6)+(9-2)}\right) \times 2$$
 5

$$=4+\left(\frac{3}{3+7}\right)\times2$$

$$=4.6$$
 (5)

Let the actual times be y.

Then,
$$x = \frac{y-10}{2}$$
.

$$\therefore y = 2x + 10. \quad \boxed{5}$$

$$\overline{y} = 2\overline{x} + 10$$

$$\therefore \overline{y} = 2 \times 4.4 + 10$$

Actual mean =
$$18.8$$
 $\boxed{5}$

$$\sigma_{y} = 2\sigma_{x} \qquad \boxed{5}$$

Actual s.d. =
$$2 \times \sqrt{3.64}$$
 $\approx 2 \times 1.91$ = 3.82 5

Actual mode =
$$2 \times 4.6 + 10$$