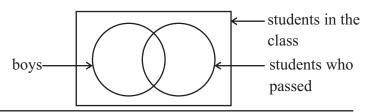


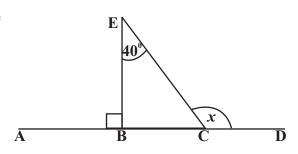
PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

THIRD TERM TEST - 2020 MATHEMATICS - I

02 Hours

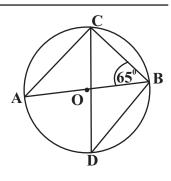

Name / Index No. :

Grade 11

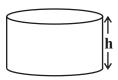

- Answer all the questions on this paper itself.
- Each question carries two marks in Part A and 10 marks for each question in Part B.

PART - A

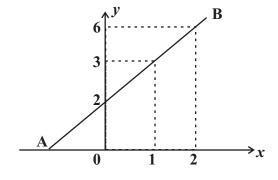
- 01. The assessed annual value of a house, within the administrative domain of a certain provincial council, is **Rs. 48000**. If the annual rates charged on this house is, **Rs. 1080**, calculate the rates percentage.
- 02. The following Venn diagram denotes how the students of a certain class, passed an examination. Shade the region relevant to the girls who failed the exam.

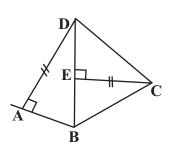


- 03. Denote in the index form. $log_3 243 = 5$
- 04. **ABCD** is a straight line in the given figure. Find the value of x^{o} , with the data provided.



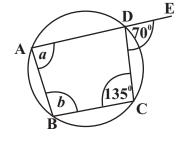
- 05. Factorize. $2x^2-x-3$
- 06. **600** litres of water, flows through a pipe within **10** minutes. Find the rate of water flow of that pipe in litres per second.


07. **AB** is a diameter of the circle with centre 'O'. $\overrightarrow{ABC} = 65^{\circ}$. Find the value of \overrightarrow{BDC} .


08. If the circumference of the base of the given right cylinder is 22 cm and the surface area of the curved surface is 220 cm^2 , Find the value of h.

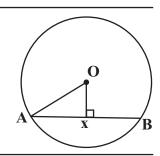
- 09. In the **AB** straight line, given in the figure,
 - (i) Find the gradient
 - (ii) Write the equation of the straight line.

- 10. Simplify. $\frac{3x}{2}$ $\frac{3}{4x}$
- 11. In the given figure, \overrightarrow{ABC} is bisected by \overrightarrow{BD} and $\overrightarrow{AD} = \overrightarrow{EC}$. Name two triangles which are congruent and state the case of congruency.

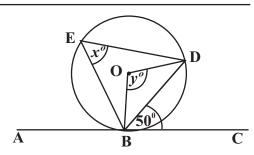


12. Solve. $2x^2 - 32 = 0$

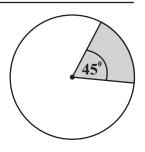
13. In the building **AB**, the top most floor is **A** and the bottom is **B**. When observed from **A**, a car parked at point **C** on the horizontal ground can be seen with an angle of depression of **42°**.

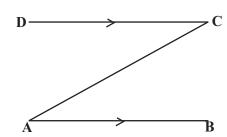


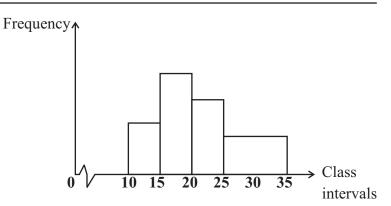
- (i) Show the given data in the sketch.
- (ii) Denote tan 42° using the sides.
- 14. In the given figure, **ABCD** is a cyclic quadrilateral. **AD** is produced upto **E**. Find the values of **a** and **b**.

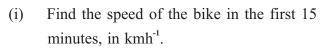


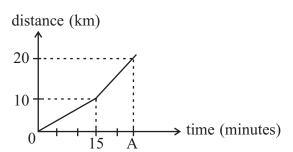
- 15. Find the least common multiple. $4a^2$, 2ab, $3b^2$
- 16. In the geometric progression with **2** as the first term and also the common ratio, denote the **15**th term as a power of **2**.
- 17. The radius of the circle with centre 'O' is 13 cm. AB is a chord and OX \(\begin{aligned} \text{AB} \).


 If OX = 5 cm, Find the length of AB chord.

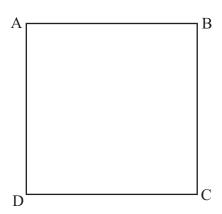

- 18. If $A = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, find AB
- 19. **AC** is a tangent to the circle with centre 'O'. If $\overrightarrow{CBD} = 50^{\circ}$, find the values of x and y.


- 20. There are 28 pencils of same shape and size, in a box. Some of them are red in colour and the rest is yellow. If the probability of a pencil randomly drawn out, being yellow, is $\frac{3}{7}$, find the number of red pencils in the box.
- 21. Find the arc length of the shaded region of the circle with radius 21 cm.


- 22. Find the number of days needed for 8 men to complete, twice of a work done by 4 men in 7 days.
- 23. Consider the following statements and put (\checkmark) or (*) in the boxes provided.
 - (i) The diagonals of a parallelogram, are bisected perpendicularly.
 - (ii) If the opposite sides of a quadrilateral are equal and parallel, it is a parallelogram.
 - (iii) The diagonals of a rhombus, bisect its area.
- 24. The locus of points equidistant from **AB** is **CD**. Sketch the point **M**, which lies on **CD** and which is equidistant from **A** and **C**, by using the knowledge about loci.

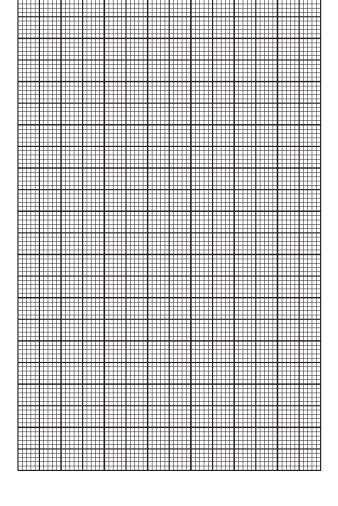


25. Draw the frequency polygon on the histogram given below.


- (01) (a) In a certain Pradeshiya Sabha, (Local Government office) $\frac{3}{7}$ of the funds received by it, is allocated for development purposes and the rest is distributed equally among three Grama Niladhari Divisions.
 - (i) What fraction of the total amount is given for a Grama Nilashari division?
 - (ii) If a Grama Niladhari division gets Rs. 800 000, what was the amount allocated for the development purposes of the Pradeshiya Sabha?
 - (b) The following distance time graph denotes the way that Mr. Rohana travelled in his motor bike to the city.

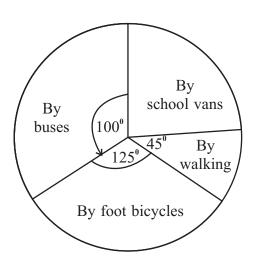
(ii) If Mr. Rohana travelled with a speed, of 60kmh⁻¹ in the last 10 km, find the time taken for it and find the value of A, in the graph.

- (02) In the given figure, ABCD is a square shaped metal sheet of area 196cm². Maximum number of sectors with radius 7 cm and 45° of angle at the centre, is going to be removed from it.
 - (i) Find the length of one side of the square sheet.
 - (ii) Draw a sketch of a sector that is going to be removed from the square sheet, by taking DC as one side and angle at the centre, on D vertex. (Include the measurements)

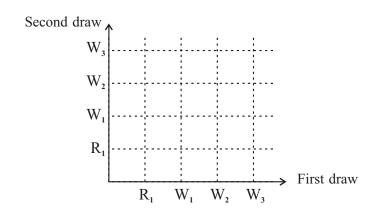


	(iii)	In a sector that is going to be removed,
		(a) find the arc length.
		(b) find the area.
	(iv)	Find the perimeter of the remaining metal sheet after removing one sector.
	(v)	Estimate how many sectors can be removed from the ABCD metal sheet.
(03)	(a)	In a certain Private Limited company which pays annual dividends of Rs. 6 per share, M. Priyanjana invested Rs. 50 000 and received a dividend income of Rs. 15 000.
		(i) How many shares have been bought by Mr. Priyanjana in the above company?
		(ii) Find the selling price of a share in the company.
		(iii) After receiving the dividend income, Mr. Priyanjana sold all the shares for Rs. 60 00 Write the percentage of the capital gain to the amount he invested in the company.
	(b)	The assessed value of a house in a certain administrative division is Rs. 80 000. The annurate percentage charged on it is 6%.
		(i) What is the amount of rates charged for one year?
		(ii) What is the amount of rates charged for a quarter ?

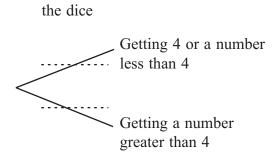
(04) (a) The amount paid for school vans by students in a certain month is given in the table given below.


Amount paid (Rs.)	No. of students	Cumulative frequency
0 - 1000	4	
1000 - 2000	3	
2000 - 3000	5	
3000 - 4000	7	
4000 - 5000	3	
5000 - 6000	2	

- (i) Complete the cumulative frequency column in the above table.
- (ii) By taking a suitable scale, draw the cumulative frequency curve.
- (iii) Find the median amount paid by a student, by using the cumulative frequency curve.



- (b) The methods of coming to school by a certain set of students is given in the pie chart.
 - (i) If the number of students, who come to school by school vans, is 24, find the no. of students who walk to school.


(ii) What fraction of students come to school by buses ?

- (05) (a) 3 white hair pins and 1 red hair pin of same shape and size, are in a box. Namali takes one hair pin out, randomly and gives it to her sister. Namali then takes another hair pin for herself.
 - (i) Represent all the possible outcomes in the given grid.

- (ii) Mark all the events of taking two hair pins with different colours and write the probability of it.
- (iii) If Namali replaced the hair pin of the first draw and then took another hair pin, show that the probability of the above question is 37.5%.
- (b) There are 2 red pens and a blue pen in box A and 3 red pens and 2 blue pens in box B. The pens are of the same shape and size. A student tosses an unbiased dice with the faces marked from 1 to 6. If the dice gives number 4 or a number less than 4, a pen from box A is taken out. If the dice gives a number greater than 4, a pen from box B is taken out.
 - (i) Complete the blanks in the given tree diagram.

- (ii) Extend the given tree diagram according to the events of taking out a pen from box A and box B.
- (iii) Write the probability of getting a red pen.

Grade 11

PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

THIRD TERM TEST - 2020 MATHEMATICS - II

03 Hours

Name / Index No.:

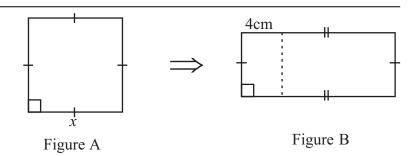
- Answer 10 questions by selecting 5 questions from part A and 5 questions from part B.
- Write relevant steps and correct units in the answers.
- Each question carries 10 marks.
- The volume of a right cylinder with base radius r and height h, is r^2h .

Part - A

(01) An incomplete table to draw the graph of the function y = x(x - 4) - 1 is given below.

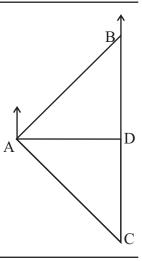
x	-1	0	1	2	3	4	5
y	4	-1	-4	•••••	-4	-1	4

- (a) (i) Find the value of y when x = 2.
 - (ii) Draw the graph of the above function by taking a suitable scale.
- (b) From the graph,
 - (i) Write the coordinates of the turning point.
 - (ii) Write the interval of values of x when the function is negative.
- (c) (i) Find the roots of the equation $x^2 4x 1 = 0$ using the graph.
 - (ii) Write the equation of the function when the above graph is displaced up by one unit, in the form $y = (x a)^2 + b$
- (02) A survey was conducted by using 50 employees who assemble electric equipments in a certain company. The time taken to assemble one electric equipment and the relevant no. of employees is given in the table below.

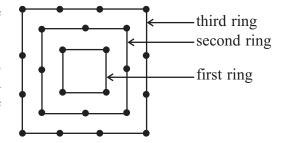

Time taken to assemble one equipment (minutes)	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49
No. of employees	4	7	18	12	06	03

- (i) Write the modal class.
- (ii) Find the mean time to assemble one electric equipment to the nearest whole number and show that the number of employees needed to assemble 1440 equipments in an eight hour shift, is more than 100.

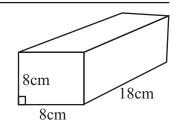
(03) The following table shows how two shops sell the same electric equipment for the customers.


Shop	Market Price (Rs.)	Down Payment (Rs.)	No. of Monthly Installments	Loan amount to be paid monthly (Rs.)
A	35 000	7 000	10	
В	34 500	6 500	•••••	2 800

- (i) Copy the given table in your answer sheet and complete the blanks.
- (ii) Find the number of month units that the interest has to be paid by a person who bought the equipment from shop A.
- (iii) If the interest for a month unit in shop A is Rs. 35, find the monthly installment in shop A.
- (iv) If shop B charges, Rs. 42 of interest for one month unit, find the annual interest percentage of shop B.
- (04) Figure A shows a square shaped metal sheet with length *x* cm. Figure B shows a rectangular metal sheet which is obtained by removing 2 cm from one side of the square sheet and adding 4 cm to the other side of the square sheet.

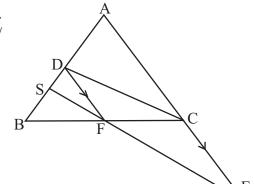

- (i) Write the length and breadth of the rectangular metal sheet.
- (ii) If the area of the rectangular sheet is 41cm^2 , construct a quadratic equation using x in the form of $ax^2 + bx + c = 0$
- (iii) By completing the square or using any other method, show that the length of a side of the square is $5\sqrt{2}$ 1
- (iv) By taking $\sqrt{2} = 1.41$, find the length of the rectangle.
- (05) (a) Simplify. $\frac{1}{4x+4} \frac{1}{5x+5}$
 - (b) Sujatha buys kids shirts for Rs. 180 each and kids trousers for Rs. 150 each by spending Rs. 2940. She then sells kids shirts for Rs. 280 each and kids trousers for Rs. 300 each and gains a profit of Rs. 2300.
 - (i) By taking the number of kids shirts she bought as 'a' and number of kids trousers as 'b', construct a pair of simultaneous equations.
 - (ii) By solving them, find the number of kids shirts and kids trousers that Sujatha bought.

- (06) A ship which leaves harbour A, sails for 50 km with a bearing of 035° and reaches harbour B. Then it sails from harbour B to harbour C with a bearing of 180°.
 - (i) Show the data in the given sketch diagram.
 - (ii) The perpendicular distance from A to BC, is AD. Find the distance AD by using trigonometric ratios.
 - (iii) If DC = 20 km, Find the value of $\stackrel{\wedge}{ACD}$.
 - (iv) By using AĈD, find the bearing of harbour A, from harbour C.

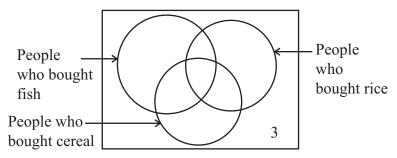


Part - B

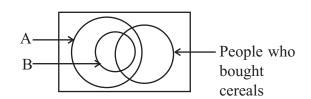
- (07) (a) The following figure shows how some chillie plants are grown in square shaped rings.
 - (i) When the number of plants in the first, second and third rings are considered, in which type of a progression can they be written as consecutive terms?

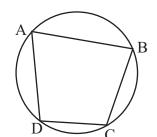


- (ii) In which ring is 48 chillie plants are grown?
- (iii) What is the total number of chillie plants in 12 rings?
- (b) In the geometric progression 3, -6, 12, which term is 192?
- (08) (a) The figure shows a cuboidal metal block with cross sectional area as 8 cm x 8 cm and length 18 cm. This metal block is melted and without wasting any metal, 9 metalic cylinders are made with radius 'a' and height 7 cm. Show that $a = \frac{8}{111}$



- (b) By using logarithm tables, find the value of 'a' to the nearest second decimal place.
- (09) Construct the followings by using only a straight edge with cm/mm scale and a pair of compasses. Show your construction lines clearly.
 - (i) Construct the ABC triangle with AB = 7 cm, \overrightarrow{ABC} = 60° and BC = 5.5 cm.
 - (ii) Extend AB upto E, and construct the locus of points equidistant from BE and BC.
 - (iii) Mark the point of intersection of the above locus and the bisector of BAC as O and construct the perpendicular OD, from O to BE.
 - (iv) Construct the circle which touches BE at D and also the BC side.
 - (v) Write the reason for the extended AC to become a tangent to the circle with centre 'O'.


(10) In the ABC triangle, AB = AC and the midpoint of AB is D. AC is produced upto E so that AD = CE. And also CE // DF and when EF is produced, it meets AB at S.


- (i) Show that CEFD is a parallelogram.
- (ii) Prove that 4BS = AB.
- (11) The following Venn diagram shows the details about customers who came to a super market within an hour and the things they bought such as fish, rice and cereal.

- (i) Copy the given incomplete Venn People who—diagram in your answer sheet and bought cereal include the data given below.
 - No. of people who bought rice, is 20 and the no. of people who bought only cereals, is 4.
 - 6 people bought only rice and out of the 12 people who bought rice and fish, 4 people didn't buy cereals.
 - 16 people bought fish and one person bought fish only.
- (ii) How many people who came to the super market, bought cereal?
- (iii) If Mr. Sumith bought rice and fish only, shade the region which denotes it.
- (iv) What is the total number of customers who came within the hour?

- (v) If all the people who bought fish, also bought rice, name A and B in the new Venn diagram.
- (12) ABCD is a cyclic quadrilateral. The tangent which is drawn to the circle at C, meets the extended AB side at E. The bisector of ADC is DB and AC and DB intersect at F.

- (a) (i) Copy this figure in your answer sheet and include the given data.
 - (ii) If $\overrightarrow{CBE} = a$, express the given angles by a, and give reasons too.
 - (a) BDC

- (b) BCF
- (b) (i) Prove that ADF triangle and BCF triangle are equiangular triangles.
 - (ii) If 5 BC = 4 AD and DF = 4 cm, find the length of CF.

සියලුම හිමිකම් ඇවිරියි. / All Rights Reserved, ucation වනම් පළාත් අධ්යාපන වයම් පළාත් අධ්යාපන දෙවර්ගමේ වේ විද්යාප් අත්යාපත් අවස්ථා artiment of Provided කි පළාත් අව වයම් පළාත් අධ්යාපන දෙවර්ගමේ වේ විද්යාප් අත්යාපත් අධ්යාපත් අධ්යාප	p දෙපාර්තමේන්තුව Department of Provincial Education වලඹ සළාත් අධ්නපන දෙපාර්තමේන්තුව	
විෂයය Subject	විභාග අංකය Index No.	
විභාග ශාලාවෙන් පිටතට ගෙනයාම තහනම. Not to be removed from the Exar	mination Hall.	

Paper - I - Part A

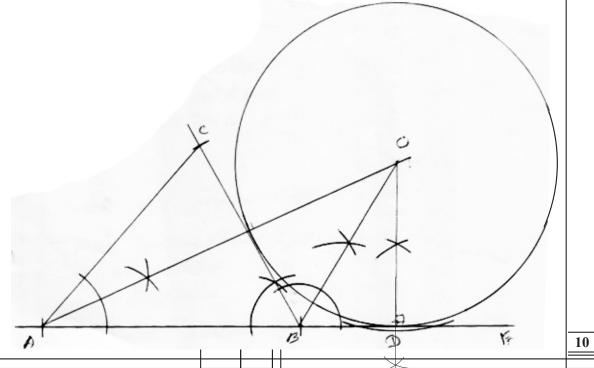
	raper-1-rareA		
01.	2.25%		02
	1080 x 100%	01	
02.			02
	boys () students who)	
	passed		
03.	3 ⁵ = 243		02
04.	$x = 130^{\circ}$		02
	Obtaining $\overrightarrow{BCE} = 50^{\circ}$	01	
05.	$2x^2 - 3x + 2x - 3$	01	
	x(2x-3)+1(2x-3)		
	(2x - 3)(x + 1)	01	02
06.	1 ls ⁻¹		02
	Obtaining $\frac{600}{60 \times 10}$		
	60 x 10		
07.	$\hat{BDC} = 25^{\circ}$		02
	Obtaining $A\hat{C}B = 90^{\circ}$ or $B\hat{A}C = 25^{\circ}$	01	
08.	h = 10cm		02
	Obtaining 2 rh = 220 or $\frac{220}{22}$	01	
	22		
09.	m = 3	01	
	y = 3x + 2	01	02
10.	$2x^2$		02
	$\frac{3x}{2}$ x $\frac{4x}{3}$	01	
	2 3	01	
11.	ABD BCE	01	
	case of congruency (AAS)	01	02
12.	$2x^2 = 32$		
	$x^2 = 16$	01	
	$x = \pm 4$	01	02
13.	A		
	\Box _B	01	
	C	V1	
	$\tan 42^{\circ} = \frac{AB}{BC}$	01	02
14.	$b=70^{\circ}$	01	
	$a = 45^{\circ}$	01	02
			(n

15.	$12 a^2b^2$		02
16.	$T_{15} = 2 \times 2^{(15-1)}$		
	$= 2 \times 2^{14}$	01	
	= 2 ¹⁵	01	02
17.	AB = 24cm		02
	Obtaining AX = 12cm	01	
18.	$\begin{pmatrix} 6 & -3 \\ 8 & -4 \end{pmatrix}$		02
19.	$x = 50^{\circ}$	01	
	$y = 100^{\circ}$	01	02
20.	16		02
	4 x 28	01	
21.	16.5cm		02
	$2 \times \frac{22}{7} \times 21 \times \frac{45}{360}$	01	
22.	7 days		02
	$4 \times 7 = 28$ or obtaining 56	01	
23.	×		
	✓ ✓		02
24.	D M C		
	Drawing the perpendicular	01	
	bisector of AC / marking M	01	02
25.	Drawing the correct frequency		02
	polygon		50
	Paper - I - Part B		
01.	(a) (i) For Grama Nilashari		
	divisions = $1 - \frac{3}{7}$		
	$=\frac{4}{7}$	01	
	(ii) For one Grama Nilashari division $= \frac{4}{7} \times \frac{1}{3}$	01	
	$=\frac{4}{21}$	01	

Total amount $= \frac{4}{21} = 800\ 000$ 01 $= \frac{800\ 000}{4} \times 21$ 01 $= \text{Rs. } 4\ 200\ 000$ Development of Pradeshiya Sabha $= \frac{3}{7} \times \text{Rs. } 4\ 200\ 000$ 01 06 (b) (i) speed $= \frac{10}{15} \frac{\text{km}}{\text{h}}$ 01 $= 10 \times \frac{60}{15} \text{ km}^{-1}$ 01 $= 10 \times \frac{60}{15} \text{ km}^{-1}$ 01 (ii) time $= \frac{10}{60} \times 60 \text{ minutes}$ 01 $= 10 \text{ minutes}$ 01 $= 14 \text{cm}$ 02 $= 14 \text{cm}$ 03 (ii) (a) arc length $= 2 \times \frac{22}{7} \times 7 \times 7 \times \frac{1}{8} = 19.25 \text{cm}^2$ (iv) perimeter $= 14 + 14 + 14 + 7 + \frac{7}{7} + 5.5 = 61.5 \text{cm}$ 02 (v) 9 pieces 01 $= 10 \times 100 \times 100 = 100 \times 100 = 100$		_	
$= \frac{800\ 000}{4} \times 21 \qquad 01$ $= \text{Rs. } 4\ 200\ 000$ Development of Pradeshiya Sabha $\frac{3}{7} \times \text{Rs. } 4\ 200\ 000$ $= \text{Rs. } 1\ 800\ 000 \qquad 01 \qquad 06$ (b) (i) speed $= \frac{10}{15} \frac{\text{km}}{60} \qquad 01$ $= 10 \times \frac{60}{15} \text{ km}^{-1} \qquad 01$ (ii) time $= \frac{10}{60} \times 60 \text{ minutes} \qquad 01$ $= 10 \text{ minutes}$ $A = 25 \qquad 01 \qquad 04$ $= 10 \text{ minutes}$ $A = 25 \qquad 01 \qquad 04$ $= 14 \text{cm}$ (ii) $A \qquad B \qquad 02$ $= 14 \text{cm}$ (iii) $A \qquad B \qquad 02$ (iv) perimeter $= 14 + 14 + 14 + 7 + 7 + 5.5$ $= 61.5 \text{cm} \qquad 02$ (v) 9 pieces $= \frac{15\ 000}{6} \qquad 02$ (ii) selling price $= \frac{50\ 000}{2\ 500}$ (iii) selling price $= \frac{50\ 000}{2\ 500}$	Total amount = $\frac{4}{21}$ 800 00	00 01	
Development of Pradeshiya Sabha $\frac{3}{7} \times Rs. \ 4\ 200\ 000 = Rs. \ 1\ 800\ 001 = Rs$	$= \frac{800\ 000}{4} \times 21$	01	
Sabha $\frac{3}{7}$ x Rs. 4 200 000	= Rs. 4 200 000)	
Sabha $\frac{3}{7}$ x Rs. 4 200 000	Development of Pradeshiy	a	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{7}$ x Rs. 4 200 00	0	
$= 10 \times \frac{60}{15} \text{ kmh}^{-1}$ $= 40 \text{ kmh}^{-1}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 10 minutes$		01	06
$= 10 \times \frac{60}{15} \text{ kmh}^{-1}$ $= 40 \text{ kmh}^{-1}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 10 \text{ minutes}$ $= 14 \text{ cm}$ $= 10 \text{ minutes}$ $= 10 minutes$	(b) (i) speed = $\frac{10}{15}$ km h	01	
(ii) time = $\frac{10}{60}$ x 60 minutes = 10 minutes A = 25 01 02. (i) length of a side = $\sqrt{196}$ = 14cm B (ii) A B = 5.5cm 02 (ii) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm 02 (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm (v) 9 pieces 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2 500 02 (ii) selling price = $\frac{50000}{2500}$	$= 10 \text{ x} \frac{60}{15} \text{ kmh}^{-1}$		
$A = 25$ 01 02. (i) length of a side = $\sqrt{196}$ = 14cm A B (ii) A B 02 (ii) (a) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ = 19.25cm² (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm (v) 9 pieces 01 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2 500 (ii) selling price = $\frac{50000}{2500}$	$= 40 \text{ kmh}^{-1}$	01	
02. (i) length of a side = $\sqrt{196}$ = 14cm 01 02 02 01 02 01 02 02	(ii) time = $\frac{10}{60}$ x 60 minutes	01	
02. (i) length of a side = $\sqrt{196}$ = 14cm O1 B (ii) D 7cm C (ii) (a) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm O2 (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ = 19.25cm² (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm (v) 9 pieces 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2 500 O2 (ii) selling price = $\frac{50000}{2500}$			
02. (i) length of a side = $\sqrt{196}$ = 14cm A B (ii) A B 01 02 (ii) (a) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm 02 (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ = 19.25cm² (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm 02 (v) 9 pieces 01 10 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2 500 02 (ii) selling price = $\frac{50000}{2500}$	A = 25	01	
A B O1 O2 A B O2 D 7cm C (ii) (a) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ O2 (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ O2 (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ O2 (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ O2 (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ O2 (v) 9 pieces O1 10 10			10
(ii) A B O2 (iii) A or length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ = 19.25cm ² (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm (v) 9 pieces 02 (iv) perimeter = $\frac{15000}{6}$ = 2500 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2500 (ii) selling price = $\frac{50000}{2500}$	02. (i) length of a side = $\sqrt{196}$		
(ii) $\frac{1}{45^{\circ}}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}$	= 14cm	01	
D 7cm C (ii) (a) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm 02 (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ = 19.25cm ² 02 (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm 02 (v) 9 pieces 01 10 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2500 02 (ii) selling price = $\frac{50000}{2500}$		02	
D 7cm C (ii) (a) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm 02 (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ = 19.25cm ² 02 (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm 02 (v) 9 pieces 01 10 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2500 02 (ii) selling price = $\frac{50000}{2500}$			
D 7cm C (ii) (a) arc length = $2 \times \frac{22}{7} \times 7 \times \frac{1}{8}$ = 5.5cm 02 (b) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ = 19.25cm ² 02 (iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5cm 02 (v) 9 pieces 01 10 03. (a) (i) no. of shares = $\frac{15000}{6}$ = 2500 02 (ii) selling price = $\frac{50000}{2500}$			
$= 5.5 \text{cm} \qquad 02$ (b) area $= \frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ $= 19.25 \text{cm}^{2} \qquad 02$ (iv) perimeter = 14 + 14 + 14 + 7 + 7 + 5.5 $= 61.5 \text{cm} \qquad 02$ (v) 9 pieces $01 \qquad \boxed{10}$ $03. (a) (i) \text{ no. of shares} = \frac{15000}{6}$ $= 2500 \qquad 02$ (ii) selling price = $\frac{50000}{2500}$			
$= 5.5 \text{cm} \qquad 02$ (b) area $= \frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ $= 19.25 \text{cm}^{2} \qquad 02$ (iv) perimeter = 14 + 14 + 14 + 7 + 7 + 5.5 $= 61.5 \text{cm} \qquad 02$ (v) 9 pieces $01 \qquad \boxed{10}$ $03. (a) (i) \text{ no. of shares} = \frac{15000}{6}$ $= 2500 \qquad 02$ (ii) selling price = $\frac{50000}{2500}$	(ii) (a) arc length = $2 \times \frac{22}{2} \times 7 \times \frac{1}{2}$		
(b) area $= \frac{22}{7} \times 7 \times 7 \times \frac{1}{8}$ $= 19.25 \text{cm}^2$ (iv) perimeter $= 14 + 14 + 14 + 7 + 7 + 5.5$ $= 61.5 \text{cm}$ (v) 9 pieces 02 (v) 9 pieces 03. (a) (i) no. of shares $= \frac{15000}{6}$ $= 2500$ 02 (ii) selling price $= \frac{50000}{2500}$			
(iv) perimeter = $14 + 14 + 14 + 7 + 7 + 5.5$ = 61.5 cm	(b) area = $\frac{22}{7}$ x 7 x 7 x -	8	
		-	
03. (a) (i) no. of shares $=\frac{15\ 000}{6}$ $=2\ 500$ 02 (ii) selling price $=\frac{50\ 000}{2\ 500}$		02	
03. (a) (i) no. of shares $=\frac{15\ 000}{6}$ $=2\ 500$ 02 (ii) selling price $=\frac{50\ 000}{2\ 500}$	(v) 9 pieces	01	
(ii) selling price $=\frac{50\ 000}{2\ 500}$ 02			10
$= 2500 (ii) selling price = \frac{50000}{2500}$	1 03.1 (a) (1) no. 01 snares =	-	
(ii) selling price = $\frac{50\ 000}{2\ 500}$		02	
i i ner snare i i i		1	ıl
$- p_0 20 02 $. 50 000		
- RS. 20 02	I I Der Share		

SHEET		
(iii) Capital gain		
= 60 000 - 50 000		
= 10 000	01	
percentage = $\frac{10\ 000}{50\ 000} \times 100$		
50 000 = 20%	01	06
(b) (i) annual rate	01	
$= \frac{6}{100} \times 80\ 000$		
= 4 800	02	
(ii) quarterly = $\frac{4800}{4}$		
	02	0.4
= Rs. 1200	02	04
		10
04. (i) Cumulative frequency		
4		
7		
12		
19		
22 24	01	
24	01	
(ii) 25		
20		
shts		
No. of stude		
0 /		
	02	
0 10 90 400	03	
0 8 8 8 8 4		
Amount of money		
median = $\frac{1}{2}$ x 24 th		
$=12^{\text{th}}$	01	
= Rs. 3 000	01	06
(b) (i) angle in school van sector		
$= 360^{\circ} - (100^{\circ} + 125^{\circ} + 45)$	5°)	
$=360^{\circ} - 270^{\circ}$	0.1	
= 90°	01	

	no. of student who walk to school		
	$=\frac{24}{90^{\circ}} \times 45^{\circ}$	01	
	90° = 12	01	
		71	
	(ii) by bus $=\frac{100^{0}}{360^{0}}$	01	04
	$=\frac{5}{18}$	01	04
	10		10
05.	(a) (i) W_3 W_3 W_4 W_2 W_3 W_4 W_2 W_3 W_4 first draw	02	
	Circling correctly	01	
	Probability $\frac{6}{12}$ or $\frac{1}{2}$	01	
	(ii) Probability = $\frac{6}{16}$ x 100	01	05
	$= 37.5\%$ (b) (i) $A box$ dice $\frac{2}{3} 4 \text{ or } \frac{2}{3} Blue$ $\frac{1}{3} \text{greater } \frac{3}{5} \text{Red}$ $\frac{1}{3} \text{greater } \frac{3}{5} \text{Red}$		
	than 4 $\frac{2}{5}$ Blue B box (ii) getting a red pen = $\left(\frac{2}{3} \times \frac{2}{3}\right) + \left(\frac{1}{3} \times \frac{3}{5}\right)$ $\frac{4}{9} + \frac{1}{5}$ $\frac{20+9}{45}$	01	03
		0.1	02
	<u>29</u> 45	01	02
			10
	Paper - II		
01.	(a) (i) $y = -5$	01	
	(ii) Marking axes correctly	01	
	Marking points correctly	01	
	Drawing a smooth curve	01	04
	(b) (i) (2, -5)	01	
	(ii) $-0.2 < x < 4.2$	02	03
			L (()


	(c) (i) $x =$	-0.2 an	d		01	
	, ,		01			
	x = 4.2 (ii) $y = (x - 2)^2 - 4$					03
	(11)	01	10			
02. Г	Class interval	х	f	fx	1	
	20-24	22	4	88	1	
	25-29	27	7	189		
	30-34	32	18	576		
	35-39	37	12	444		
	40-44	42	6 3	252		
L	45-49	47		141	-	01
			f=50	fx = 1690]	01
	i) 30 - 34				01	
	Correct	mid val	ues		01	
	Correct	fx value	es		01	
	fx				01	
	Mean	= fx	$=\frac{16}{5}$	590	01	
		f	= 3	0	01	
			= 1	minutes	01	
	No. of en	nployes	= 14	40 x 34	01	
			= 102	50 x 8	01	
				> 100	01	09
						10
03. (i) Rs. 2 80	00			01	
	10 insta	llment			01	02
	ii) month u	nits	$=\frac{10}{2}$	$\frac{1}{2}(10+1)$	01	
			= 55		01	02
	iii) Total in	terest		5 x 55		-
			= Rs. 1	925	01	
	Total amo	unt = 1	Rs. 28	000		
	+ Rs. 1 925					
	Rs. 29 925					
M	Monthly installment = $\frac{\text{Rs. } 29 925}{10}$					
	$= \emptyset_{\overline{\iota}}. \ 2 \ 992.50$					03
	(iii) interest rate of shop B					
		$=\frac{4}{28}$	$\frac{12}{800}$ x 1	100 x 12	02	
1 1		_ 100	/		0.1	ا مما
		= 18%	0		01	03

04.	(i)		
04.	x-2		
	x+4		
	length = (x + 4) cm	01	
	breadth $= (x - 2)$ cm	01	02
	(ii) Area = length x breadth		
	(x+4)(x-2)=41	01	
	$x^2 - 2x + 4x - 8 = 41$	01	
	$x^2 + 2x - 8 = 41$		
	$x^2 + 2x - 8 - 41 = 0$		
	$x^2 + 2x - 49 = 0$	01	03
	$(iii) x^2 + 2x = 49$		
	$x^2 + 2x + 1 = 49 + 1$		
	$(x+1)^2 = 50$		
	$x+1=\pm\sqrt{50}$	01	
	$x+1=\pm 5\sqrt{2}$		
	$x = \pm 5\sqrt{2} - 1$		
	x can not be negative		
	$x = 5\sqrt{2} - 1$	01	
	length of rectangle = $x + 4$		
	$=5\sqrt{2}-1+4$	01	
	$= 5 \times 1.41 + 3$	01	
	= 10.05cm	01	05
			10
05.	(a) $\frac{1}{4+4} - \frac{1}{5+5}$		
	(a) $\frac{4x+4}{4x+4} = \frac{5x+5}{1}$		
	$\frac{1}{4(x+1)} - \frac{1}{5(x+1)}$		
	5 - 4	02	
	$\frac{5-4}{20(x+1)}$		
	$\frac{1}{20(x+1)}$	01	03
	(b) (i) kids shirt = a kids trouser = b		
	180a + 150b = 2940 — ①	01	
	100a + 150b = 2300 - 2	01	02
		01	02
	(ii) $180a + 150b = 2940 \longrightarrow \bigcirc$ $100a + 150b = 2300 \longrightarrow \bigcirc$		
	100a + 150b = 2300 — ② ① - ②		
	80a = 640	01	
	a = 8	01	
	Substituting to ①		
ш			

	$180 \times 8 + 150b = 2940$ $1440 + 150b = 2940$ $150b = 2940 - 1440$	01	
	150b = 1500 $b = 10$ no. of kids shirts = 8	01	
	no. of kids trousers = 10	01	05 10
06.	(i) A B 180° D		
	Marking 035°, 180°, 50km		02
	(ii) $\sin 35^\circ = \frac{AD}{50}$	01	
	$0.5736 = \frac{AD}{50}$	01	
	AD = 28.68 km	01	03
	(iii) $\tan A\hat{C}D = \frac{28.68}{20}$	01	
	= 1.434 AĈD = 55° 07'	01	02
	(iv) 360° - 55° 07′	01 01	03
	$=304^{\circ} 53'$	01	02
			10
07.	(a) (i) 4, 8, 12, arithmetic progression	01	01
	(ii) $Tn = a + (n - 1)d$ 48 = 4 + (n - 1) 4	01	
	44 = (n - 1) 4 $11 = n - 1$	01	
	11 + 1 = n $12 = n$	01	03

	(ii) $\operatorname{Sn} = \frac{n}{2} (a+l)$ = $\frac{12}{2} (4+48)$		
	$=\frac{12}{2}(4+48)$	01	
	$= 6 \times 52$	01	
	= 312	01	03
	(b) $a = 3$, $r = -2$		
	$T_n = ar^{n-1}$	01	
	$192 = 3 \times (-2)^{n-1}$		
	$64 = (-2)^{n-1}$	01	
	$(-2)^6 = (-2)^{n-1}$		
	6 = n - 1		
	6 + 1 = n	01	03
	n = 7		10
09.	(i) Constructing AB	01	
	Constructing $\hat{ABC} = 60^{\circ}$	01	
	Drawing ABC triangle	01	03
	(ii) Drawing BE	01	
	(ii) Drawing BE Constructing the bisector of EBC	01 01	02
	Constructing the bisector of EBC		02
	•	01	02
	Constructing the bisector of EAC (iii) Constructing the bisector of BAC	01 01	02
	Constructing the bisector of EÂC (iii) Constructing the bisector of BÂC Marking 'O'	01 01 01	
	Constructing the bisector of EAC (iii) Constructing the bisector of BAC Marking 'O' Constructing OD (iv) Constructing the circle with	01 01 01	03

08.	(a) Volume of cuboid $= 8 \times 8 \times 18$	01	
	Volume of 9 cylinders = $r^2h \times 9$		
	$= \frac{22}{7} \times a^2 \times 7 \times 9$	01	
	$\frac{22}{7}$ x a ² x 7 x 9 = 8 x 8 x 18	01	
	$a^2 = \frac{8 \times 8 \times 18}{22 \times 9}$	01	
	$a^2 = \frac{64}{11}$		
	$a = \sqrt{\frac{64}{11}}$	01	05
	$a = \frac{8}{\sqrt{11}}$		
	(b) $a = \frac{8}{\sqrt{11}}$		
	$= lg \ 8 - \frac{1}{2} lg \ 11$	01	
	$= 0.9031 - \frac{1}{2} \times 1.0414$	02	
	= 0.9031 - 0.5207	02	
	= 0.3824		
	$= only \ 0.3824$		
	a = antilog 0.3824	01	05
	a = 2.412 cm a = 2.41 cm		10
	• • u – 2.41 CIII		

	Г		
10.	(i) To be proved CEFD is a		
	parallelogram Proof $:= D\hat{B}F = A\hat{C}F$		
			01
	(AB = AC) $DFB = ACF$		
	(AE // DF)		01
	DBF = DBB		
	BD = DF		01
	But $BD = AD$ (D is the mid)	noint)	01
	DF = AD	pomit	
	CE = AD (given)		01
	DF = CE		01
	Also DF // CE		
	CEFD is parallelogram		01
	CEI D is paranetogram		01
	(ii) To be proved :- 4BS = AB		
	$ \begin{array}{c} Proof := AC // DF \\ AD = PD \end{array} $ (data)		
	AD – BDJ		
	F is the mid point of BC		01
	Also DC // FS		
	S is the mid point of BD		01
	BS = DS		01
	2BS = BD		
	4BS = AB		01
			01
			10
$\vdash \vdash$			=
11.	(i) 16 20		
	124	Rice	
	1 200		
	Fish 3 2		
	4 3		
	3		04
	Cereal		

	(ii) = 8 + 2 + 3 + 4 = 17		01
	(iii)		02
	(iv) $17 + 1 + 4 + 6 + 3 = 31$		02
	(v) A - people who bought rice		01
	B - people who bought fish		10
12.	(a) (i) A B E		
	(ii) (a) $\widehat{ADC} = a$ (the exterior angle of a cylic quadrilateral is equal to the interior opposite \gtrless)	01	
	$\widehat{BDC} = \frac{a}{2}$	0.1	
	(BD bisects ADC)	01	
	(b) $\hat{CAB} = \frac{a}{2}$ (angles in the same segment) $CAB = \hat{BCE} \text{ (angles in the alternate segment } \}$	01	
	$BCE = \frac{a}{2}$	01	04
	(b) (i) In the ADF and BFC	01	
	same segment) $A\hat{D}F = F\hat{C}B \text{ (angles in }$	01	
	same segment)	01	03
	ADF and BFC are equiangular		
	(ii) $\frac{CF}{DF} = \frac{BC}{AD}$	01	
	$\frac{\text{CF}}{4} = \frac{4}{5}$	01	
	$CF = \frac{16}{5}$		
	CF = 3.2cm	01	03 10